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Abstract

The Waves Platform is a global public blockchain platform, providing
functionality for implementing the most-needed scenarios for an account
and token control. In this paper, we present our vision for Waves smart
contracts as a two-level mechanism with a more detailed description of
RIDE – the first-level language for smart contracts.

RIDE has smart accounts and smart assets for embed the calculation
system. This level has a simple-syntax functional language for script-
ing with pre-calculated complexity due to Turing-incompleteness. We
describe the concept of RIDE and implementation of its structure and
compilation process.

1 Introduction

In 1996, the computer scientist and cryptographer Nick Szabo first described
smart contracts as “a set of promises, specified in digital form, including pro-
tocols within which the parties perform on these promises” [1, 2]. Despite the
development of technology since it was formulated, this definition is still accu-
rate and captures the essence of a smart contract. The code of a smart contract
should provide unconditional fulfillment of an established contract or set of rules
and protect against incorrect actions, without recourse to intermediaries.

Smart contracts are traceable, transparent and irreversible, since they are
hosted on the blockchain. Smart contracts must be guaranteed to complete,
otherwise the network will fail. A smart contract language usually contains a
signature verification mechanism.

Adding smart contracts brings the possibility of multi-signature mechanisms
(multisig, escrow) or to withdraw funds according to certain conditions. Addi-
tionally, implementing smart contracts enables future use cases such as atomic
swaps, oracles, multi-party lotteries or betting on sports games.

2 Existing Approaches

Bitcoin [3] includes a scripting system that is neither understandable nor ex-
pressive, with a Turing-incomplete zero-knowledge proof-based language. Due
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to expressiveness limits, attempts to reuse this system are asymptotically more
costly and time-consuming. Many of the tasks that can be solved using Bitcoin
scripts, for example [6, 7], can be resolved more easily and efficiently if they are
programmed in more understandable and less rudimentary language.

A fully Turing-complete language like Ethereum’s Solidity [4] has some disad-
vantages: you cannot always determine the execution time of a contract written
in such a language, and thus cannot determine the amount of gas needed to pay
for the transaction. Ethereum pays miners certain fees that are proportional to
the computational costs required by the smart contract. When a user sends a
transaction to invoke a contract, the gas limit and the price for each gas unit
must be specified. A miner who includes the transaction in a block subsequently
receives the transaction fee corresponding to the amount of gas required for ex-
ecution. If the execution of a contract requires more gas than the predefined
limit, execution is terminated with an exception and the state is reverted to the
initial state, but the gas is not returned. This is not ideal for users, because
contracts have unpredictable complexity. Since smart contracts can transfer
assets, besides correct execution it is also crucial that their implementation is
secure against attacks aimed at stealing users’ funds. An analysis of possible
attacks through smart contracts in Ethereum based on the limitations of its
“gas” system has already been articulated [5].

3 Waves Approach

Our realization of smart contracts has two parts: the first is a smart account
language implementation and the second a foundational layer for developing
various decentralized applications and smart contracts on the blockchain, with
a built-in Turing-complete programming language. We see the syntax of our
language as functional, similar to F#: strong and statically typed.

3.1 Smart Accounts

We developed a more direct generalization of Bitcoin scripting, a Turing-incomplete
language which can still handle most of the use cases that can be undertaken
by Turing-complete languages.

A conventional account can only sign transactions before sending them to the
blockchain. The idea of a smart account is the following: before the transaction
is submitted for inclusion in the next block, the account checks if the transaction
meets certain requirements, defined in a script. The script is attached to the
account so the account can validate every transaction before confirming it.

The main requirement for our smart accounts is that they can be run for the
price of normal transactions with a predefined fee, without any additional “gas”
or other costs. This is possible due to the statically predictable execution time.
Since Waves has been built on top of an account-based model like Ethereum or
Nxt (instead of Bitcoin’s input/output system), we can set security scripts on
accounts.
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In our vision, smart accounts cannot send transactions themselves or transfer
funds according to given conditions, but can read data from the blockchain (for
example, the height of a block or signatures from the transaction) and return
the result of a predicate obtained on the basis of this data.

The language of smart accounts should be as simple as possible so that it is
accessible to beginners or ordinary users who are not familiar with a particular
language paradigm. Language grammar is human-readable and user-friendly.
We are consciously not going to provide users with the ability to write functions,
recursions, and loops of indefinite nesting. We have explained earlier that we
avoid constructions whose complexity cannot be predicted in advance and that
cannot be executed in a definite number of steps. That is the reason why we
also have no ’for each’ constructions.

4 Use-cases

The main focus for the first version of smart accounts is different security, inte-
gration, and crowdfunding cases.

An example of a security use case is multi-signature accounts. A multi-
signature account is useful for contracts that need to be jointly owned, or shared,
or when binding an agreement between multiple parties, or all of these. With
its help, counterparties who do not trust each other can freeze a certain amount
of tokens on the blockchain until the condition of having the required number
of participants’ signatures is fulfilled.

The next group of use cases is integration, such as Oracles. An Oracle is
an application that is responsible for connection to a given data source. It can
place externally-sourced data on the blockchain as a series of transactions, but
cannot change the data in them. Other people can receive money from a given
account if this data meets the right conditions.

Conversely, if we want to remove a third party from an operation, a smart
contract can be involved in the creation of an Atomic Swap - the next step in
decentralization. An Atomic Swap is a direct trade between two users of different
cryptocurrencies, the honesty of which is guaranteed by a single contract in all
relevant blockchains that cancels the transfer of funds back to the participants
if the agreed exchange has not taken place. (“Atomic” in this definition means
that an operation will either be performed completely, or it will not be executed
at all.)

Crowd sale processes like selling tokens on an exchange can be trustlessly
implemented on Waves DEX without smart contracts. However, smart accounts
can help investors after an ICO. For example, they can be used to control fund
use via escrow, token holder voting, etc.
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5 Implementation

5.1 Phases

In the implementation of our smart contract language we have 5 stages:

1. parsing,

2. compilation,

3. deserialization,

4. cost computation,

5. evaluation.

The first two stages are off-chain stages and we will not pay attention to them
in this article. The deserialization, the cost computation, and the evaluation are
on-chain stages with special implementation and they will be discussed below.

Any expression in our concept is a simple expression tree without cycles.
The complexity of such expressions is calculated with a maximum complexity of
tree branches. Therefore a smart account code requires a statically-predictable
amount of resources for execution, such as memory or CPU.

While the user writes a smart account code in a high-level language, the
Waves Contracts execution engine is a straightforward evaluator of a low-level
expression tree within context. In order to achieve that, there are several stages
which make text script produce an execution result.

The third stage is deserialization. In this stage RIDE only checks syntax
rules, like correct variable names, function invocation with () and so on.

The forth stage is a cost calculation. It operates within a context of type
definitions, types of defined values and predefined function signatures. An ex-
pression operates the base type EXPR, and its sub-type BLOCK. Each EXPR has a
type and is one of:

• LET(name, block) to define a variable

• GETTER(expr, fieldName) to access field of structure

• FUNCTION_CALL(name, argBlocks) to invoke a predefined function within
context

• IF(clause, ifTrueBlock, ifFalseBlock) for lazy branching

• leafs: CONST_LONG(long), CONST_BYTEVECTOR(byteVector),

CONST_STRING(string), REF(name), TRUE, FALSE

The last stage is the evaluator, which operates an expression tree within a
context. It traverses the low-level AST, produced at the previous step, returning
either the execution result or an execution error. The Context contains a map
of predefined functions with implementation, user’s functions, predefined types
and lazy values that can be calculated upon calls within the given tree path.
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5.2 Language Description

For standard actions the binary operations: >=, >,<,<=,+,−,&&, ||,==, ! =
,%, /, ∗ and unary −, ! are available. Lazy constants declaration are imple-
mented via the let keyword, as in the F# language. There is an IF-THEN-
ELSE clause, and access to fields of any instances of predefined structures is
implemented via . (e.g. someInstance.feldOne). Calls to predefined functions
are implemented via (). Access to elements of a List is performed using [].

RIDE has no cycle and recursion possibility, unlike Solidity. We should note
that RIDE as a language is not Turing-complete due to the lack of the possi-
bility of creating loops or any other jump-like constructions. At the same time,
it can be Turing-complete when used in conjunction with a blockchain, since
theoretically the blockchain has an infinite length and we have other possibil-
ities, e.g. DataTransaction. This kind of transaction provides data for smart
contracts to work with. For example, if an oracle publishes some data once in a
while using a publicly known account, smart contracts can use that data in their
logic. In this article [10] it is shown that Turing-completeness of a blockchain
system can be achieved through unwinding the recursive calls between multiple
transactions and blocks instead of using a single one, and it is not necessary to
have loops and recursion in the language itself.

All constants are declared in lazy let constructions, which delays the eval-
uation of an expression until its value is needed, and does it at most once. For
instance:

let hash = blake2b256(preImage).

The hash is not a variable: once created its values never change, and all struc-
tures are immutable.

SetScriptTransaction sets the script which verifies all outgoing transac-
tions. The set script can be changed by another SetScriptTransaction call
unless it’s prohibited by a previously set script.

There is a mechanism for checking a value against a pattern and you can
handle the different expected types in a match expression. A match expression
has a value, the match keyword, and at least one case clause:

match tx {

case t:Transfer => t.recepient

case t:MassTransfer => t.transfers

case _ => throw()

}

throw() signals the occurrence of an exception during a script execution. In
case of throw the transaction does not pass into the blockchain.

5.3 Standard Library

It is an important property that the smart account does not store any data in
the blockchain. A smart account has access to blockchain state values that can
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Table 1: Waves context functions

Operator name Syntax Description
transactionById ByteVector ⇒

Option[Transaction]
return a transaction by
ID

transactionHeightById ByteVector ⇒
UNION(LONG,
UNIT)

return a transaction
height by ID

addressFromRecipient Option(ByteVector)
⇒ addressType

get an address from re-
cipient

assetBalance addressOrAliasType
⇒ Long

provide balance info for
any account

addressFromPublicKey ByteVector ⇒ ad-
dressType

return an address by
public key

addressFromString String ⇒
UNION( ad-
dressType.typeRef,
UNIT)

return an address by
string

wavesBalance addressOrAliasType
⇒ Long

return waves balance by
address

toBytes value: Boolean |
Long | String ⇒
ByteVector

return a bytes of
boolean/long/string
value

toString value: Boolean |
Long ⇒ String

return a string from
boolean/long

be retrieved and executed relatively fast, in a “constant” time, for example to
such fields as:

• balances of accounts;

• access to account state;

• current block’s properties (e.g. height and timestamp);

• data stored in other transactions referenced by transactions (e.g. proofs,
DataTransaction).

The high-level smart account code is a logic formula that combines predicates
over a context (blockchain state and transaction) and cryptographic statements
(Table 3) and functions from Table 1 and Table 2.

The DataTransaction can set/overwrite a typed primitive value for by an
address of sender as a key. The fields can be accessed from WavesContracts by
key.

The types which are used to predicate are Long, Boolean, String, byteVector,
List[T], Nothing, Unit, UnionType. UnionType can be combination of many
types e.g. UnionType(type*) or be an object, which represents a missing value
None. A user cannot create new types; only predefined ones are available.

6



Table 2: Waves context functions for DataTransaction

Operator name Syntax Description
getInteger (accountAddress:

ByteVector,
key: String) ⇒
Option[Long]

get a long value from
DataTransaction or
from state by key

getBoolean (accountAddress:
ByteVector,
key: String) ⇒
Option[Boolean]

get a boolean value
from DataTransaction
or from state by key

getBinary (accountAddress:
ByteVector,
key: String) ⇒
Option[ByteVector]

get a byte vector from
DataTransaction or
from state by key

getString (accountAddress:
ByteVector,
key: String) ⇒
Option[String]

get a string value from
DataTransaction or
from state by key

getInteger (accountAddress:
ByteVector,
index: Long) ⇒
Option[Long]

get a long value from
DataTransaction array
by index

getBoolean (accountAddress:
ByteVector,
index: Long) ⇒
Option[Boolean]

get a boolean value
from DataTransaction
array by index

getBinary (accountAddress:
ByteVector,
index: Long) ⇒
Option[ByteVector]

get a byte vector from
DataTransaction array
by index

getString (accountAddress:
ByteVector,
index: Long) ⇒
Option[String]

get a string value from
DataTransaction array
by index
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Table 3: Cryptographic functions in Smart Account language

Operator name Syntax Description
sigVerify(body, sign,

pubKey)

(body: ByteVector,
signature: ByteVector,
pubKey: ByteVector)
⇒ Boolean

signature validation

keccak256(message) ByteVector⇒ ByteVec-
tor

hash computation for
keccak256

blake2b256(message) ByteVector⇒ ByteVec-
tor

hash computation for
blake2b256

sha256(message) ByteVector⇒ ByteVec-
tor

hash computation for
blake2b256

toBase58String’ ByteVector ⇒ String converting to Base58
toBase64String’ ByteVector ⇒ String converting to Base64
fromBase58String’ String ⇒ ByteVector converting from Base58
fromBase64String’ String ⇒ ByteVector converting from Base64

5.4 Halting Problem

5.4.1 Termination of Deserialization of Contract

The deserialization stage builds an abstract syntax tree (AST), a directed acyclic
graph, from script text. A complete description of such grammar is a set of rules
that determines all non-terminal symbols of the tree so that each non-terminal
symbol can be reduced to a combination of a terminal symbol (leaf) by successive
application of the rules. As a top-down parsing strategy, it always halts when
all expression converts into terminal symbols.
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Figure 1: Deserialization tree for RIDE bytecode

The formal representation of bytecode language:

S → T
T → l ong
T → s t r i n g
T → b y t e s
T → t r u e
T → f a l s e
T → i f S S S
T → b l o c k
b l o c k → s t r i n g S S
T → r e f
r e f → s t r i n g
T → g e t t e r s t r i n g
g e t t e r → s t r i n g S
T → s t r i n g S
T → f u n c a l l S
S → ε
f u n c a l l → s t r i n g | l ong S∗

Note that the long, string, bytes, true, false are terminals and eps is
ε. A full deserialization tree for this grammar is presented in Figure 1. Each
leaf of a tree is either a terminal or leads to right-recursion.

Let us prove that the parser always halts. As an input we have a byte array,
that is always finite, based on the fact that the user cannot write an infinite
amount of code. The parser processes all incoming bytes in turn, from the left
to the right in accordance with the described grammar. The parser is a top-
down one, begins with the start symbol and systematically applies the rules of
the CFG (context-free grammar) until there are no more non-terminal symbols
left. We have no left-recursion: all recursions are finite, since we have a finite
set of bytes and always move the pointer to the right and never to the left. The
pointer is moved on every step, and if there is an error, the parser stops.

Bytecode consists of several parts. The first byte is always a type byte (for
1 from 10 types). Then a structure can be different and depends on type, which
can be seen in Figure 2 and Figure 3.
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Figure 2: The structure for terminal types long, true, false

Figure 3: The structure for terminal types string, bytes

All terminal functions from grammar in the parser code consists of get

operations from java.nio.ByteBuffer (see documentation [11]), that always
move to the next byte in the buffer. All elements in the buffer start with the
special byte of type and then continues to record the value’s bytes or length in
bytes and value bytes.

5.4.2 Termination of cost calculation stage

The cost computation stage is important to validate the cost of user input and
the output of this stage is exactly what is sent to the blockchain. The analyzed
expression is a finite set of tree leaves, from AST that is built in the first step,
so this stage also always halts, since the tree has a finite structure.

Let us consider the procedure for calculating the cost of the next example:

l e t x = y
l e t y = x
x + y

In this fictional example, that will raise an error at the evaluation stage, we
define x as y and vice versa, and we show that it does not get stuck in a cycle.
Our lazy computation approximator calculates variables with let only when this
variable appears in some expression. Thus, for this example, the approximator
calculates x and y when it encounters in x + y. It puts variables in the special
array Arr and removes them from it after calculating the complexity of the
corresponding let. So, we put x and y into Arr. Then we remove the x from
the array and calculate its complexity as ref + complexity(y), where ref is
a complexity of reference. Then we calculate y complexity as ref and the total
is equal to ref + ref + sum + ref, where sum is complexity of addition.

We add and remove each variable only once, as we can see from the example
above. As soon as there are no elements left in the Arr array and no tree leaves
without an assessment of complexity, the cost computation stage is completed.
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5.4.3 Termination of evaluation stage

The third stage is an evaluation, which operates an expression tree within a
context. It traverses the low-level AST, produced at the previous step, returning
either the execution result or an execution error.

Let’s prove the fact that the evaluation stage always halts by using structural
induction on the AST.
Claim: If the root of the AST is visited once, then each node in the in AST is
visited at most once.
Proof:
Base: Suppose that the root is of a leaf type (CONST_*, TRUE, FALSE): the root
is the only node of the AST, so the statement is trivially true.
Induction:

• LETs and REFs case: Suppose the root is of type BLOCK. Then it has two
children: INNER and LET. The same reasoning as for FUNCTION_CALL above
applies to INNER. The left side of the LET has no children except the name,
which is visited once. As far as the expression on the right side of the LET

goes, it is not visited. Rather, a new pointer to it is created in the context
map. However, it can be visited at most once from the context map,
because once it is visited via REF, it is replaced with its value and not
present in the map again. Therefore, by inductive hypothesis, the same
applies to its children.

• No LETs-REFs case: Suppose the root is of type FUNCTION_CALL, GETTER,
or IF. The corresponding eval function (evalFunctionCall, evalGetter,
and evalIF) visits each child at most once. There is no other way to visit
the child of the root except to do it from the root, because children of the
root have only one pointer to them – namely, the root (by definition of a
tree). Therefore, by inductive application of the claim, each node in every
subtree of the root will be visited at most once.

Since upon contract execution, the expression root is visited once and, as we
have shown above, all its descendants are visited only once, the whole compu-
tation halts.

6 Examples

6.1 Multi-Signature Account

Suppose that there are 3 people in a team and they hold common funds for
corporate purposes. It is convenient for the team to make a decision about
the allocation of common funds according to the majority decision, and they
use a multi-signature account to do this. They create an account and do
SetScriptTransaction with the multi-sig account, which can be implemented
as follows:
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let alicePubKey = base58’B1Yz7fH1bJ2gVDjyJnuyKNTdMFARkKEpV’

let bobPubKey = base58’7hghYeWtiekfebgAcuCg9ai2NXbRreNzc’

let cooperPubKey = base58’BVqYXrapgJP9atQccdBPAgJPwHDKkh6A8’

let aliceSigned = if(sigVerify(tx.bodyBytes, tx.proofs[0],

alicePubKey)) then 1 else 0

let bobSigned = if(sigVerify(tx.bodyBytes, tx.proofs[1],

bobPubKey)) then 1 else 0

let cooperSigned = if(sigVerify(tx.bodyBytes, tx.proofs[2],

cooperPubKey)) then 1 else 0

aliceSigned + bobSigned + cooperSigned >= 2

Here users gather 3 public keys in proof[0], proof[1] and proof[2]. The
account is funded by the team members and after that, when at least 2 of 3
team members decide to spend money, they provide their signatures in a single
transaction. The smart account script validates these signatures with proofs
and if 2 of 3 are valid then the transaction is valid too, or else the transaction
does not pass to the blockchain. Note that after the SetScriptTransaction

operation all non multi-signature transactions are discarded.

6.2 Atomic Swap

An atomic swap is the exchange of one cryptocurrency for another without the
participation of third parties. In the RIDE language an atomic swap can be
written as:

let Bob = Address(base58’$BobBC1’)

let Alice = Address(base58’$AliceBC1’)

match tx {

case ttx: TransferTransaction =>

let txToBob = (ttx.recipient == Bob) && (sha256(ttx.proofs[0])

== base58’$shaSecret’) && ((20 + $beforeHeight)

>= height)

let backToAliceAfterHeight = ((height >= (21 + $beforeHeight))

&& (ttx.recipient == Alice))

txToBob || backToAliceAfterHeight

case other => false

}
where $shaSecret is sha256 of “some secret message from Alice”, and

$beforeHeight is some predefined height.
For example, transaction’s list will be:

1. TransferTransactionV2 from AliceBC1 to swapBC1

2. TransferTransactionV2 from swapBC1 to BobBC1 OR after some height
from swapBC1 to AliceBC1
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7 Summary

Smart contracts are an important mechanism for any blockchain platform and
their realization should be convenient and understandable for people. In this
paper we have presented our vision for Waves smart contracts as a two-level
mechanism.

The first level has smart accounts and smart assets for embed the calcula-
tion system. This level has a simple-syntax functional language for scripting
and all scripting on this level has pre-calculated complexity due to Turing-
incompleteness. This approach covers critical requirements for smart contracts
and also provides a good basis for further development of a fully-fledged Turing-
Complete second level to our smart contracts.

The second level will allow the creation of decentralized applications on the
blockchain, which will be able to send transactions themselves.
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