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Abstract

Music Transcriptionis a task of converting a musical recording into sheet music for
further reproduction. The problem is still unsolved and requires a high level of
expertise. Most of the works split the task into several subproblems. First of them
is called frame-level transcription, which predicts the set of fundamental frequencies
in the original recording for every frame. This subproblem is the main focus of this
work.

The solution to frame-level transcriptionis called a piano-roll representation- a bi-
nary matrix which represents whether the given note has been played in the frame
or not. However, most of the approaches do not produce a piano-roll representation
in an end-to-end fashion. They rather output a posteriogram- real matrix with the
same dimensions, which represents the level of uncertainty of whether note has been
played during the frame. Ycart and Benetos, 2018 shows that Long Short Term mem-
ory networkcan be trained to post-process theposteriogramsand improve the piano-roll
representation instead of simply cropping the posteriogramat some value.

In this work, we train more robust LSTM network and experiment with different
types of posteriograms.

HTTP://WWW.UCU.EDU.UA
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Chapter 1

Introduction

1.1 Problem Description

Automatic Music Transcription (AMT)is a task of converting music signals into a no-
tation that can be used to reproduce the original signal. It is considered to be one of
the most important tasks in the �eld of Music Information Retrieval (MIR). It is still un-
solved, with human experts outperforming any solution in the �eld. However, this
task is considered to be of high interest, with lots of approaches and novel methods
applications.

1.2 Motivation

Although humans outperform computers in AMT task, it still requires a high level of
expertise. Not even all musicians are capable of it. So, even imperfect or incomplete
solutions to AMT can be useful for the people as a tooltip or a guideline. The main
motivation for solving this task is improvisation capturing, as there are no musical
scores for it.

1.3 AMT Subproblems

Despite some works trying to tackle AMT in an end-to-end fashion (Román, Pertusa,
and Calvo-Zaragoza, 2019), most of the works split the tasks into several subprob-
lems (Benetos et al., 2019, see 1.1):

� Frame-level Transcription
� Note-level Transcription
� Stream-level Transcription
� Notation-level Transcription

Frame-level Transcription(also known as Multi-Pitch Estimation or MPE) is a task
of detecting a set of fundamental frequencies at each time-stamp of the input signal
(see 1.1a).

Note-level Transcriptiongoes one step beyond the previous one and detects onset
and offset time of each note (see 1.1b).

Apart from the onset and offset time, Stream-level Transcriptionassociates each
note with a stream. It could be responsible for a particular instrument or voice in the
original recording (see 1.1c).

Finally, Notation-level Transcriptionsolves AMT task by producing a musical no-
tation from the original recording using notes onsets, offsets and stream information
(see 1.1d).

It is worth noting that despite MPE seeming the most straightforward task at
�rst, it has lots of peculiarities, such as:
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