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Abstract. Grammatical Error Correction (GEC) is an important Natu-
ral Language Processing (NLP) task. It deals with building systems that
automatically correct errors in written text. The main goal is to develop
a GEC system that receives a sentence with mistakes and outputs a cor-
rected version. One of the existing approaches to solve this task is the
iterative sequence tagging approach. The main idea is that the model
takes erroneous sentences as input and predicts sequences of tags that
need to be applied to these sentences to turn them into correct ones. The
desired result of this work is an improved sequence tagging model, which
achieves better results on commonly accepted benchmark datasets. In
order to improve the model, we want to explore the following things: 1)
to discover the impact of large transformers or other training schemes,
2) to explore data-weighted training strategies, 3) to explore ensemble
distillation techniques for improving a single model, 4) to explore the
possibility to extend tagging operations space, 5) to explore combining
sequence tagging with the sequence-to-sequence approach.

Keywords: natural language processing · grammatical error correction
· sequence tagging

1 Introduction and motivation

1.1 Problem observation

In today’s world, literacy is highly valued. Competent writing requires knowl-
edge of various language rules, exceptions, grammar constructions. Lack of this
knowledge or inattention can be the cause of making errors. People might have
an unpleasant impression when they notice mistakes in the text. Therefore it is
necessary to check it. However, manual validation is time-consuming, requires
attention and in-depth knowledge. That is why systems that can automatically
correct errors are beneficial and in demand. Such systems can be applied in many
scenarios, such as writing essays, papers, reports, and emails. They significantly
speed up checking, allow visually and interactively correct mistakes, and at the
same time, teach grammar[27]. Research on this topic is actively developing, and
significant progress has already been achieved.
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1.2 Motivation

Grammatical Error Correction (GEC) is an important Natural Language Pro-
cessing (NLP) task. It deals with building systems that automatically correct
errors in written text. Previously, proofreading required professional linguistic
skills. With the advent and development of GEC systems, more and more people
have the opportunity to check their text and write more competently. We se-
lected this research topic as it has significant social value and demand. Our goal
is to explore existing state-of-the-art approaches to GEC tasks, analyze their
advantages and disadvantages, suggest possible improvements, and develop an
open-source grammar error correction system.

In this work, we first make a brief overview of the GEC topic. We start with
an explanation of how we selected the literature for review. Next, we formu-
late the problem statement for GEC. After that, we cite a list of major public
datasets that are available for use. We consider the metrics used to assess GEC
models’ quality and standard evaluation benchmarks. Then we mention the ap-
proaches that have made a significant contribution to the development of the
GEC field. Further, we regard the current state-of-the-art models and existing
training strategies. This review allows us to substantiate our proposed ideas for
improvement. We formulate research hypotheses, present the first outcomes, and
what remains to be done.

2 Related Work

2.1 The method for literature search and selection

To select relevant and representative literature, we used the following iterative
approach. Firstly, we focused our search on articles that review the GEC field
[26][29]. They provided information about the commonly accepted benchmarks
[3][23], which evaluate existing approaches.

Using Microsoft Academics3, we found articles that referred to these GEC
benchmarks. Articles were sorted by time (from recent to older). We selected
ten articles, which describe diverse approaches that have high results on the
benchmarks. These ten became the ”seed” for further search using the Con-
trolled Snowball Sampling tool4 [9]. It generated a catalog of selected relevant
publications using analysis of citation relationships, probabilistic topic modeling,
and snowball sampling. The resulting catalog contained a set of articles covering
all significant research and achievements in the GEC field. The initial seed and
result catalog can be found on this repository5 .

We selected the final list of articles from the catalog based on the model’s
score on the standard benchmarks, the availability of citations, the novelty, and
contribution to the GEC systems development.

3 https://academic.microsoft.com/
4 https://github.com/gendobr/snowball
5 https://github.com/MaksTarnavskyi/gec



2.2 The problem formulation

The main goal is to develop a GEC system that receives a sentence with mistakes
and outputs a corrected version. This system should be able to cope with different
types of errors. They can be morphological, lexical, punctuation, and others.
Both the quality of the corrections and the performance speed of the system
are important. We discuss more details about the models and their training and
evaluation process in the following sections.

2.3 Datasets observation

A comprehensive overview of the GEC area was done in [29]. It starts from ob-
servation of the main public datasets used for supervised learning of GEC mod-
els. These datasets are NUCLE[7], Lang-8[27], FCE [31], JFLEG [22], WriteIm-
prove+LOCNESS [3]. They consist of parallel pairs of erroneous and grammat-
ically correct sentences. More details about them are given in Table 1 based on
information from [29].

Table 1: Statistics and properties of public GEC datasets.
Corpus Component Sents Tokens Chars per sent Sents Changed Error Type

NUCLE - 57k 1.16M 115 38% minimal

Train 28k 455k
FCE Dev 2.1k 35k 74 62% minimal

Test 2.7k 42k

Lang-8 - 1.04 11.86 56 42% fluency
M M

JFLEG Dev 754 14k 94 86 fluency
Test 747 13k

Train 34.3k 628.7k 60 67%
W&I Dev 3.4k 63.9k 94 69% -

Test 3.5k 62.5k - -

LOCNESS Dev 1k 23.1k 123 52% -
Test 1k 23.1k - -

2.4 Evaluation

Tools M2Scorer [6] and ERRANT [2] are most often used to assess text cor-
rection quality. For instance, ERRANT can automatically extract edits from
parallel original and corrected sentences, classify them, compare their overlap
with ground truth edits. Any edit with the same span and correction in target
and corrected sentences is a true positive (TP). In contrast, unmatched edits in
the corrected and target sentences are false positives (FP) and false negatives
(FN), respectively. Tools return calculated Precision, Recall, and F0.5 (which
gives more weight to the Precision of the corrections than to their Recall).
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The commonly accepted shared tasks CoNLL-2014[23] and BEA-2019[3] are
used to check and compare existing GEC models’ quality. These benchmarks
test the ability of models to cope with all types of errors (punctuation, spelling,
and others), and the sentences for them were annotated by professional linguists.

2.5 Development of GEC models

The initial GEC approaches were hand-crafted rule-based models developed by
professional linguists (similar to [21]). However, it was complicated to describe
so many rules and exceptions used in the language which would not contradict
each other.

The first data-driven approaches were based on Statistical Machine Trans-
lation (SMT). An example of application is described in [33]. This work de-
scribes phrase-based statistical machine translation (PBSMT) for the automatic
correction of errors. This model produces conditional Bayesian probabilities be-
tween transitions from erroneous phrases to grammatically correct phrases. It
doesn’t yield high performance on CoNLL-2013 shared task [13], but reveals
many problems that require careful attention when building SMT systems for
error correction.

The approach based on Neural Machine Translation (NMT) is first described
in the article [32]. It used the Encoder-Decoder method. The encoder encodes an
erroneous sentence into a vector, and the decoder generates an already corrected
sentence based on this vector. Both the encoder and the decoder were RNNs[5]
composing of GRU or LSTM [11] units. The model achieved the new SOTA F0.5

39 on CoNLL-2014[23] at that time.
The advent of the Transformer architecture [28] has made a significant con-

tribution to NLP development, and most modern GEC approaches use BERT-
based [8] encoders and decoders.

2.6 Recent sequence-to-sequence models

The application of BERT as an encoder and decoder for the GEC task is in-
vestigated in [12]. Authors evaluated three methods: (a) initialize an Encoder-
Decoder GEC model using pre-trained BERT as BERT-init [15]; (b) pass the
output of pre-trained BERT into the Encoder-Decoder GEC model as additional
features (BERTfuse) [34]; (c) Combine the best parts of (a) and (b) in their new
method (c), when first fine-tune BERT with the GEC corpus and then use the
output of the fine-tuned BERT model as additional features in the GEC model.
Their approach (c) had better performance with result of F0.5 = 65.2 at CoNLL-
2014 [23] and F0.5 = 69.8 at BEA-2019 [3].

Sequence-to-sequence NMT-based approaches give quite good results but also
have limitations. Their learning requires a lot of training data, and they are rel-
atively slow. Therefore, researchers are trying to find methods that would speed
up the performance of the models. One of them is the approach proposed in
[4]. It improves GEC’s efficiency by dividing the task into two subtasks: Er-
roneous Span Detection (ESD) and Erroneous Span Correction (ESC). ESD



identifies grammatically incorrect text spans with an efficient sequence tagging
model. Then, ESC leverages a sequence-to-sequence model to take the sentence
with annotated erroneous spans as input and only outputs the corrected text
for these spans. Experiments show that their approach performs comparably to
conventional sequence-to-sequence models, having F0.5 = 61.0 on CoNLL-14[23]
benchmark with less than 50% time cost for inference.

2.7 Recent sequence tagging models

Most of what output the sequence-to-sequence Encoder-Decoder models is al-
most the same sentence fed to the input. The Encoder-Decoder models autore-
gressively capture full dependency among output tokens but are slow due to
sequential decoding. A much more straightforward task is to predict the edit
tags that need to be applied to turn erroneous sentences into correct ones.

This approach was proposed in the article [20]. The authors introduced
LaserTagger - a sequence tagging model that casts text generation as a text
editing task. Corrected texts are reconstructed from the inputs using three main
edit operations: keeping a token, deleting it, and adding a phrase before the to-
ken. The model combines a BERT encoder with an autoregressive Transformer
decoder, which predicts edit operations. LaserTagger had F0.5 = 40.5 on the
BEA-19 [3] test. However, it gave great impetus to the development of sequence
tagging models.

Another approach was proposed in the article [1]. Their Parallel Iterative
Edit (PIE) model does parallel decoding, giving competitive accuracy with the
Encoder-Decoder models. This is possible because model:

– Predict edits instead of tokens.
– Label sequences instead of generating sequences.
– Iteratively refine predictions to capture dependencies.
– Factorize logits over edits and their token argument to harness pre-trained

language models like BERT.

This method achieves F0.5 = 59.7 on the CoNLL-14[23] task and is a significantly
faster alternative for local sequence transduction.

A similar approach, which currently has state-of-the-art results, is proposed
in the article [24]. The authors present a simple and efficient GEC sequence tag-
ger using a Transformer as an encoder and a softmax layer for tag prediction as a
decoder. In their experiments, encoders from XLNet[30] and RoBERTa[19] out-
perform three other cutting-edge Transformer encoders (ALBERT[16], BERT[8],
and GPT-2[25]). The authors always used pre-trained transformers in their Base
configurations. Their GEC system is pre-trained on synthetic data and then fine-
tuned in two stages: first on errorful corpora and second on a combination of
errorful and error-free parallel corpora. Also, they designed custom token-level
transformations to map input tokens to target corrections. These transforma-
tions increase grammatical error correction coverage for limited output vocab-
ulary size for the most common grammatical errors, such as Spelling, Noun
Number, Subject-Verb Agreement, and Verb Form [32].
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Fig. 1: GECToR model: iterative pipline.

Source: https://www.grammarly.com/blog/engineering/gec-tag-not-rewrite

Their best single-model, GECToR (XLNet) achieves F0.5 = 65.3 on CoNLL-
2014[23] (test) and F0.5 = 72.4 on BEA-2019[3] (test). Best ensemble model,
GECToR (BERT + RoBERTa + XLNet) where they simply average output
probabilities from 3 single models achieves F0.5 = 66.5 on CoNLL-2014[23] and
F0.5 = 73.6 on BEA-2019[3], correspondingly. Their inference speed is up to 10
times as fast as a Transformer-based sequence-to-sequence GEC system.

2.8 Data augmentation techniques and pre-training strategies

Encoder training requires as much quality data as possible. However, the most
extensive set of publicly available parallel data (Lang-8[27]) in GEC has only one
million sentence pairs. Therefore, many researchers are now actively exploring
data augmentation methods and strategies for their use.

For instance, in the investigation [14], the authors proposed two approaches to
error generation. In the first approach (a1), they set the probability distributions
of different types of errors, such as deleting, repeating, substituting words in a
sentence, and then directly added these errors to the correct sentences. In the
second approach (a2), they trained the Encoder-Decoder Transformer model
[28] in a reversed way, which received correct sentences as input and returned
sentences with errors at the output. As a result, the GEC model, which trained
on the data generated by approach (a1), had better results on the BEA-19 test
[3].

Furthermore, they compared two strategies for model training on synthetic
data. In the first experiment, they trained the model on the joined synthetic and
real data. As a result, they got a slightly worse score than when they trained
the model only on real data. In the second, they first pre-trained the model only
on synthetic data and then trained the model only on real data. The second
approach yielded significant improvements. This investigation demonstrated that
training strategy is essential for outcome. Their final best pre-trained models
achieved F0.5 = 65.0 on CoNLL-14 [23] and F0.5 = 70.2 on BEA-19 [3].



Another investigation is presented in the article [18]. The authors proposed
the metric delta-log-perplexity (∆ppl), defined as the difference in negative log-
probability (log-perplexity) of an individual training example between two check-
points in model training. The first checkpoint corresponds to model (θ−), which
trained on a base dataset D−, while the second checkpoint corresponds to the
model (θ+) after further finetuning on a second target dataset D+ (with trusted
quality). ∆ppl between those models for a given example (composed of input,
output pair (i, o)) should suggest which of the datasets the example is more
similar to, from the successive models θ− and θ+.

∆ppl(i, o; θ−, θ+) = log p(o|i; θ−)− log p(o|i; θ+)

When D+ is selected to be ’higher quality’ than D−, then the ∆ppl scores of
examples drawn from D− provide a heuristic for assessing their quality. Having
these scores, the authors proposed a strategy for their use. First, they sorted the
training examples according to scores. Since the model can forget more what it
learned before and remember what it learned recently, the authors gave fewer
quality examples at the beginning of training and high-quality - at the end. Thus,
the model was able to study these more meaningful examples better and, as a
result, achieved higher results on benchmarks. Also, they down-weighted the loss
of low-scoring examples during training, which further improved the final result.

Using the weighting strategy, they increased F0.5 for their single / ensemble
models from 61.1 to 62.1 / from 65.3 to 66.8 on CoNLL-14[23] and from 66.1 to
66.5 / from 71.9 to 73.0 on BEA-19[3] tests.

To sum up, the articles in this section have shown that it is essential to choose
not only the model’s architecture but also its training strategy.

2.9 Analysis

The comparison of model’s performance is presented in Table 2.

Table 2: The evaluation of models on GEC benchmarks

CoNLL-2014. BEA-2019
Model F0.5 F0.5

(Yuan et al., 2016) 39 -
(Kaneko et al., 2020) 65.2 69.8
(Chen et al., 2020) 61.0 -

(Malmi et al., 2019) - 40.5
(Awasthi et al., 2019) 59.7 -
(Omelianchuk et al., 2020) - single 65.3 72.4
(Omelianchuk et al., 2020) - ensamble 66.5 73.6

(Kiyono et al., 2019) 65.0 72.0
(Lichtarge et al., 2020) - single 62.1 66.5
(Lichtarge et al., 2020) - ensemble 66.8 73.0
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3 Problem Setting and Approach to Solution

The task is to build a system that receives a sentence with errors and returns
the corrected sentence. Our investigation focuses on the latest sequence tagging
approach based on work [24]. It is an iterative model consisting of a Transformer-
based encoder and a linear layer as a decoder. It takes erroneous sentences as
input and predicts sequences of tags that need to be applied to these sentences
to turn them into correct ones. Our goal is to explore methods that can improve
its precision and recall metrics of error correction and the speed of inference.

To evaluate the experiments, we use the development part of the BEA-19
benchmark dataset. The metric for optimization is the F0.5 score.

First of all, we want to compare the impact of different Transformer-based en-
coders and their configurations on the model’s quality. Models using Roberta[19]
and XLNet[30] encoders trained on the GEC corpus showed the best results in
[24]. However, the authors used only the base configurations, while large trans-
formers’ impact remains unexplored. We want to test the hypothesis of whether
increasing the configurations of transformers will lead to improved results. We
also want to compare the usage of the latest transformers, such as DeBERTa[10],
BART[17], and others.

After that, we want to test how the output tag vocabulary size affects accu-
racy and inference speed. In [24], the authors used 5000 edit tags for correction.
However, the impact of vocabulary size on performance remains unexplored. We
want to check if increasing the number of tags will improve the quality of the
model.

The quantity and quality of training data and their use strategy are impor-
tant for GEC[14][18]. That is why we want to discover the data weighting tech-
niques for the selection of high-quality data. Since the delta perplexity heuristic
cannot be used for the sequence tagging model, as in [18], we want to try our
own method. We want to compare the similarity of the sentence embeddings
obtained by the base model with the parameters θ− and the model θ+ which is
finetuned on the better quality dataset. We will select top K sentences, which
will have the biggest/lowest similarity between embeddings, and try to add them
into the target dataset and check performance after training on such an extended
dataset.

It is worth noting that many studies report the final result obtained by a
single model and by an ensemble of models. The ensemble’s score is higher,
while the performance is slower than for the single model. In our investigation,
we also want to discover the distilling knowledge approach from the ensemble to
the single model, improving its quality without slowing down its speed. We first
train the ensemble in the usual way and use it to re-annotate low and moderate-
quality data. After that, we want to train a single model on re-annotated data.

Another thing that can be explored is the possibility of extending tagging
operations space. Adding new edit tags might improve corrections quality.



4 Early Results and Discussion

We are currently at the beginning of our research plan. However, we already
have the first positive results.

We started with an experiment that tests the effect of large transformer
configurations on the corrections’ quality. We trained the GEC models, which
used RoBERTa[19] and XLNet[30] encoders on the base and large configurations,
and compared them with the results obtained in [24] for Stage 2.

To train the models, we used the joined datasets FCE[31], Lang-8[27], Nu-
cle[7], and WI + Locness[3]. We split each dataset into training/validation parts
in a ratio of 98/2, except for WI + Locness, for which we used existing parti-
tions. For final validation, we used the BEA-19[3] development part. The size of
the output tag vocabulary was 5000. The obtained results are shown in Table 3.

Table 3: A comparison of the results obtained using different encoders.

Encoder BEA-2019 (dev)

Precision Recall F0.5

(Omelianchuk et al., 2020)
ALBERT 43.8 22.3 36.7
BERT 48.3 29.0 42.6
GPT-2 44.5 5.0 17.2
RoBERTa 50.3 30.5 44.5
XLNet 47.1 34.2 43.8

Our base transformers
RoBERTa 50.2 31.5 44.9
XLNet 48.2 34.1 44.5

Our large transformers
RoBERTa 49.8 38.6 47.1
XLNet 48.8 39.4 46.6

As we can see, we were able to reproduce the experiment in [24] and improve
the result using larger Transformer-based encoders. Models using large configu-
rations of RoBERTa[19] and XLNet[30] performed significantly better than the
corresponding models with base configurations. This result shows the truth of
our first hypothesis. However, to fully confirm it, we need to train the models
on all Stages 1-3, not only on Stage 2.

As for other hypotheses, we are still working on them, and we will discuss
their results in future works.
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5 Summary and Future Work

Grammatical Error Correction systems are beneficial and in demand. They al-
low automatic correction of various errors in written text. Despite significant
recent progress in this area, the corrections quality and speed inference ques-
tions remain still open. This work provided a brief overview of the main existing
GEC approaches, discussed their advantages and disadvantages, outlined re-
search gaps, and proposed possible improvements. We are at the beginning of
our research plan. However, we have already achieved the first positive results.
Using large transformers, we got a better score of F0.5 metric on the BEA-2019
dev part. However, to confirm this hypothesis, it is necessary to train the model
at all stages and evaluate it on the BEA-19 test part. In the next steps, we plan
to explore other modern Transformer-based encoders for the sequence tagging
approach, investigate the impact of the output tag vocabulary size on quality
and performance. We also plan to extend training data using data weighting
techniques. Moreover, we want to explore the ensemble distillation methods for
a single model. Finally, in the future, we plan to explore the possibility of ex-
tending the edit space of tags and combining sequence tagging methods with
sequence-to-sequence methods. In our research, we adapt and apply the best-
practice methods that have performed well for sequence-to-sequence models to
sequence tagging models. The desired result of this work is an improved sequence
tagging model, which achieves better results on commonly accepted benchmark
datasets.
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