
Hot Topics in Machine Learning (HWS17)
Assignment 4: Neural Networks

Steffen Schmitz
University of Mannheim

stefschm@mail.uni-mannheim.de

1. PERCEPTRON LEARNING
Task. We look at binary classification using a perceptron.
We use two 2D datasets: a separable dataset D1(X1 and y1)
and a non-separable dataset D2(X2 and y2). Both datasets
include an additional bias feature.

1.a Rosenblatt Learning Algorithm
Task. Complete function pt train to train a perceptron
using Rosenblatt’s perceptron learning algorithm (without
an explicit bias term).

The Rosenblatt algorithm assumes uses a binary label vector
with -1 and 1 as possible classes. We reformat our input
labels to ŷ with

ŷi =

{
−1 if yi = 0

1 if y1 = 1

We use the signum function1 to bring the product of our
weights with the inputs into the same shape as the modi-
fied label vector ŷ. The perceptron with the current weight
vector w makes an error, whenever sgn(⟨w,xi⟩) ̸= ŷi.

Rosenblatt’s algorithm starts with a zero or random weight
vector and updates it as long as it makes errors on the
dataset. If the dataset is not separable by a hyperplane
the algorithm runs infinitely. Due to the infinite runtime
on inseparable data we add a number of maxepochs to our
function, but we may end our computation early, once the
error is zero.

For every point, where the prediction is wrong it updates
the weight vector by adding or subtracting the current point
from the weight vector, i.e. we add the current data point
xi to w, if we falsely predicted a label of −1 and subtract
the data point from w if we falsely predicted 1. The imple-
mentation is shown in Figure 1.

1.b Rosenblatt - Experimentation
Task. Test your function on D1 and D2. You can plot the
decision boundaries and print the misclassification rates of
multiple runs of your training algorithm as well as a linear
SVM and a logistic regression classifier. Discuss and explain
the results.

First, we run Rosenblatt’s perceptron learning algorithm on
the linearly separable dataset D1. We expect to get a line

1https://en.wikipedia.org/wiki/Sign function

def p t t r a i n (X, y , maxepochs=100 , w0=None) :
N, D = X. shape
w = w0 i f w0 i s None else np . z e r o s (D)

yhat = l i s t (map(
lambda i : i i f i == 1 else −1, y))

ypred = np . s i gn (X @ w)

i f np . a r ray equa l (ypred , yhat) or \
maxepochs == 0 :
return w

for i in range (N) :
i f yhat [i] != ypred [i] :

w += yhat [i] ∗ X[i]

return p t t r a i n (X, y , maxepochs − 1 , w)

Figure 1: Rosenblatt Perceptron Learning.

that perfectly separates the two clusters in the dataset. The
decision boundary is plotted in Figure 2. Due to the in-

Figure 2: Rosenblatt learning on D1.

cremental updates in the order of data points in X in the
pt train method this algorithm is deterministic and we will
receive the exact same result for multiple, consecutive runs.

If we repeat this process on the non-separable dataset D2 we
would expect the training function to run until maxepochs
is reached, because it will never find a perfect fit that would

1

https://en.wikipedia.org/wiki/Sign_function

allow the function to abort early. The result will still be
deterministic and should fit the dataset well. It is shown in
Figure 3.

Figure 3: Rosenblatt learning on D2 after 100 epochs.

To compare the result with the ”perfect” linear fit we added
the decision boundary of a Support Vector Machine to the
graphs that maximizes the distance between data points of
the opposing clusters.

1.c Pocket Learning Algorithm
Task. Extend your function such that it can also train a
perceptron using the pocket algorithm. In each epoch, your
function should process N random examples sampled with
replacement.

One of the major issues with Rosenblatt’s perceptron learn-
ing algorithm that we presented in Section 1.a is the infi-
nite runtime for non-separable datasets and the sudden stop,
once we reached the maxepochs threshold. The pocket algo-
rithm tries to improve this short comings by using random
examples and keeping the best weight vector w that it found
so far in its ”pocket” [3, p.91f.].

In each epoch we pick n random samples and update the
weight vector, when a sample was misclassified, and track
the number of subsequent samples that are correctly classi-
fied. If this number is bigger than the one for our weight
vector in the pocket, the current vector replaces it. In con-
trast to Rosenblatt’s learning algorithm the resulting hyper-
plane is not the same for subsequent runs. It is possible to
show that the pocket algorithms converges to the optimal
solution after a finite number of runs [2].

1.d Pocket - Experimentation
Task. Test your implementation of the pocket algorithm on
D1 and D2. Are the results different than before? Discuss
and explain.

On the separable datasetD1 we would expect that the pocket
algorithm finds an optimal solution and aborts the execution
early. Due to the randomness in the algorithm there is a
small probability that it does not find a perfect solution. If
we run the pocket training algorithm multiple times on the

first dataset we see that decision boundary changes a bit on
subsequent runs, but always provides a perfect classification.

Using the non-separable dataset D2 we can see that the
pocket algorithm uses as many epochs as specified by the
maxepochs parameter. It is impossible to abort the run
early, because there is no perfect classification. Neverthe-
less, the pocket algorithm usually finds a very good approx-
imation and has a small misclassification rate.

Now, we will compare multiple runs of the pocket algorithm
with the results of Logistic Regression and Support Vector
Machines. Surprisingly, the best perceptron result misclas-
sifies only one sample in the training set, while Logistic Re-
gression and Support Vector Machines misclassify 3 samples
each. The resulting decision boundaries are shown in Figure
4. This is a typical property of an overfitted model. In this

Figure 4: Comparing different classification algorithms on
D2.

case we would expect that the perceptron fitted model does
not generalize well on unseen data and performs worse on
the test dataset, compared to the Logistic Regression and
Support Vector Machines models.

All in all, we can see that the perceptron learning algorithms
work well on separable and non-separable data, but are com-
putationally expensive and have to be aborted, if the dataset
is non-separable. For separable data they provide (almost
always) a perfect classification, but return a random deci-
sion boundary that classifies the datasets correctly, while
Support Vector Machines maximize the distance between
the points of two datasets and, therefore, work better on
previously unseen samples.

2

2. MULTI-LAYER FEED-FORWARD NEU-
RAL NETWORKS

Task. In this task, we look at regression using multi-layer
feedforward networks (FNN) where we vary the number of
units in the hidden layer. The shape is displayed in Figure
5. We use a 1-dimensional dataset D3.

Figure 5: Neural Network Architecture.

2.a Conjecture how a fit will look like
Task. Look at the training data and conjecture how a fit
for an FNN with zero, one, two, and three hidden neurons
would look like.

The Neural Network that we use in this section has a single
numeric input, one hidden layer with n hidden logistic neu-
rons and a single linear output neuron. In this section we
try to predict the shape of the resulting fit for n = 0, n = 1,
n = 2 and n = 3 hidden neurons.

If n = 0, we directly connect our input to the linear output
neuron and obtain a linear fit. We would expect a constant
prediction of y ≈ 0 for every possible input x, because the
input dataset looks like a sine function and with equal pos-
itive and negative amplitudes the mean is close to zero.

With one hidden unit, we transform the input into a real
valued number in the range h1 ∈ [0, 1]. If we use the output
of the hidden layer as the input for our output layer we
expect a S-shaped curve that we associate with logistic units,
scaled by the linear neuron from the output. Obviously, it
is also possible to have a reversed S-shape by switching the
sign. We expect the S-shape to follow the shape of one of the
pikes in the sine-like function and take a continuous value
afterwards.

For n = 2, we have two logistic hidden units and a single
linear output neuron. This architecture is represented in
Figure 5. In this case we get two real-valued outputs in the
range from 0 to 1 from the hidden layer. Those two functions
can be combined in multiple ways to fit the dataset D3 more
or less well. It should be possible to follow the shape of the
function well. We assume that it resembles the two spikes
in the middle and diverges close to the edges. We will look
at this architecture more closely in Section 2.b.

Adding another hidden unit, we would expect that the fit
is even better than with two possible units. In the given
range of data points it should fit the dataset well and closely
resemble it. This follows from the approximation theorem
by Cybenko [1]. Although it imposes the condition that
this only holds in the unit-cube, we can rescale our input
dataset to use x-values in the range from [0, 1]. This means
that we expect an even better fit for an increasing number
of neurons. We will explore this behaviour in Section 2.d.

To conclude, we would expect the error of our fit to decrease
with an increasing number of hidden neurons, as the Neural
Network approximates the true fit of our dataset better.

2.b Train with 2 hidden units
Task. Train an FNN with two hidden neurons, determine
the mean squared error (MSE) on the training and the test
data, and plot. Is the result as you expected? Now repeat
training multiple times. What happens? Explain.

Training and plotting the Neural Network multiple times
results in three major fits that appear regularly. The Neural
Network either fits the first positive or the first negative
spike in the dataset D3 well or it fits the both spikes in the
middle well and only approximates the edges. This is shown
in Figure 6, 7 and 8, respectively.

Figure 6: Fit for first spike.

Figure 7: Fit for second spike.

Figure 8 corresponds to our assumption in Section 2.a and
has the smallest error on the training and on the test set. It
has an error of about 0.08 for both sets, while the other two
models have an error of about 0.3.

The first and second results are not as expected, because it
seems that they prefer to fit one spike really well, instead of
minimizing the error on the whole dataset. They combine
the two S-shaped functions they receive from the hidden

3

Figure 8: Fit for middle spikes.

layer without much modification through the linear neuron.
The constant tail is similar to the single-neuron architecture.

This shape could appear if the optimizer function becomes
stuck in a local optimum. We would assume that the error
function for this Neural Network architecture is not convex.
One solution to avoid this is to initialize the weight vec-
tors randomly, train the network multiple times and use the
result that minimizes our error function.

2.d Width Experimentation
Task. Train a FNN with 1, 2, 3, 10, 50, and 100 hidden neu-
rons. In each case, determine the MSE on the training and
the test dataset. Then plot the dataset as well as the predic-
tions of each FNN on the test set into a single plot. What
happens when the number of hidden neurons increases? Is
this what you expected? Discuss!

Figure 9 shows the resulting fits for different widths of the
hidden layer in our Neural Network. It is possible to clearly
distinguish the plot for 1 and 2 hidden units, while the other
fits blend into each other and model our input dataset nearly
perfectly.

Figure 9: Fit for different widths of hidden layer.

The corresponding error for the numbers of hidden units
is shown in Figure 10. We can see that the error on the
training and on the test data is similar for all numbers of
hidden units and that the error decreases rapidly for 1, 2 and
3 hidden units, while staying almost constant in the range
of 3 up to 100 hidden units.

Figure 10: MSE for different widths of hidden layer.

This plot shows that there is little gain in training more than
three hidden neurons. We call those Hockey Stick graphs
and the corner in the stick usually marks a good choice for
a parameter - the number of hidden units in our case.

This is similar to the expectation that an increasing number
of hidden neurons fits the dataset even better, but that our
approximation is good enough at some earlier point. We
can also see that the error on our test set slightly increases
for a bigger number of hidden neurons, which might be an
indication that we overfit the dataset.

As a conclusion we can say that 3 hidden neurons fit our
dataset well and are sufficient to make good predictions.

2.e Distributed Representations
Task. Train a FNN with 2 hidden neurons and visualize
the output of the hidden neurons (= distributed represen-
tation). Then visualize the output of the hidden neurons
scaled by the weight of their respective connection to the
output. Now repeat with 3 hidden neurons, then 10 hidden
neurons. Try to explain how the FNN obtains its flexibility.
Is the distributed representation intuitive?

The distributed representation corresponds to the output of
our hidden layer. It is composed of n S-shaped curves that
get an associated weight to compose the final, linear repre-
sentation. While the distributed representation is intuitive
for 2 and 3 hidden neurons it is obfuscated for 10 neurons
and, therefore, not intuitive or easy to grasp.

Figure 11 and Figure 12 show the distributed and the scaled
distributed representation for two hidden neurons.

The flexibility in Neural Networks stems from the possibility
to learn additional features and not only correct weights. If
we interpret the hidden layer as a new set of features we can

4

Figure 11: Distributed representation for 2 hidden neurons.

Figure 12: Scaled distributed representation for 2 hidden
neurons.

expand the realm of possible functions that we can model.
With additional hidden layers we can add even more features
and also features of features. One of the advantages of Neu-
ral Networks is the possibility to input raw data with little
or no preprocessing and let the network do the feature engi-
neering that may be necessary for classical machine learning
methods.

3. REFERENCES
[1] G. Cybenko. Approximation by superpositions of a

sigmoidal function. Mathematics of Control, Signals
and Systems, 2(4):303–314, Dec 1989.

[2] S. I. Gallant. Perceptron-based learning algorithms.
IEEE Transactions on Neural Networks, 1(2):179–191,
Jun 1990.

[3] R. Rojas. Neural Networks: A Systematic Introduction.
Springer-Verlag New York, Inc., New York, NY, USA,
1996.

5

	Perceptron Learning
	Rosenblatt Learning Algorithm
	Rosenblatt - Experimentation
	Pocket Learning Algorithm
	Pocket - Experimentation

	Multi-Layer Feed-Forward Neural Networks
	Conjecture how a fit will look like
	Train with 2 hidden units
	Width Experimentation
	Distributed Representations

	References

