Hot Topics in Machine Learning (HWS17)
Assignment 3: Graphical Models

Steffen Schmitz
University of Mannheim
stefschm@mail.uni-mannheim.de

1. INFERENCE IN FACTOR GRAPHS

Task. The goal of this assignment is to implement and
experiment with various inference methods for factor graphs.
We use the misconception example throughout; refer to the
lecture slides for details.

l.a Naive

Task. Implement a function naive that takes a factor graph
and outputs the full joint distribution of its variables using
naive inference.

To compute the full joint distribution for a factor graph we
have to create all possible combinations between variables,
and, therefore, compute the product of all factors contained
in the graph.

P(X) = H¢v:(Xv:)

Afterwards this must be normalized so that the values sum
up to one and form a probability.

1.b Variable Elimination

Task. Implement a function eliminate that takes a factor
graph and uses variable elimination to eliminate a specified
set of variables. Provide in your solution the factor graphs
in which (i) { A }, (ii) { A, B }, and (iii) { A, B,C } have
been eliminated.

We use variable elimination to remove non-query variables
from the graph. This means that we remove variables we
are not interested in, to reduce the complexity of our factor
graph. We do this by marginalizing out the non-query vari-
able from all factors that depend on it. See Figure 0 for the
Python implementation.

Given the Factor Graph from the lecture we can now re-
move non-query variables { A }, { A,B } and { A,B,C },
respectively. We do this by multiplying all factors ¢ that
depend on the variable that we want to remove and fixing
the value of the variable while computing the factor prod-
uct. This way we derive a new factor that takes the place
of all factors that depended on the non-query variable. This
results in the Tables [, @ and B.

1.c Gibbs Sampling

Task. Implement a function gibbs that takes a factor graph
and uses Gibbs sampling to resample the values of a spec-
ified set of variables. In particular, to resample variable

def eliminate (G, vars):
Gnew = G.copy ()
if not isinstance(vars, list):
vars = [vars]
if len(vars) = O0:
return Gnew

var, xtail = vars
factors = list (Gnew. factors_for [var])
phi = functools.reduce(

lambda x,y: x % y, factors)
Gnew. add_factor (phi. marginalize (var))
Gnew.remove_var (var)
return eliminate (Gnew, tail)

Figure 1: Variable Elimination.

Bob Charlie Debbie value
0 0 0 0.0416699
0 0 1 0.180509
0 1 0 0.0416699
0 1 1 1.80509e-05
1 0 0 7.08152e-05
1 0 1 0.0139548
1 1 0 0.708152
1 1 1 0.0139548

Table 1: Elimination of (i) { 4 }.

Charlie Debbie | value

0 0 0.0417407
0 1 0.194464
1 0 0.749822
1 1 0.0139728

Table 2: Elimination of (ii) { A, B }.

Debbie | value
0 0.791563
1 0.208437

Table 3: Elimination of (iii) { A, B,C }.

X, compute P(X| values of all other variables) and sample
from this conditional distribution.

Suppose A =1, B =0, C =1, D = 0. Provide in your
solution the conditional distributions for (i) A, (ii) B, (iii)
C, and (iv) D conditioned on the just specified values of the
other variables. If you have trouble implementing function
gibbs, proceed manually and describe each step. Otherwise,
it suffices to specify the resulting distributions.

We sample the value of exactly one variable at a time while
keeping the values of the other variables fixed. This is done
by creating the conditional probability table of the variable
that we want to sample from and looking up the probability,
depending on the other, known values. [3, p.838]

The approach of using the conditional probability table is
often faster than using the full joint distribution, because it
is possible to ignore all factors that contain only variables
that are conditionally independent of the sampled variable.
[@, p.494f.]

See Figure B for the Python implementation.

def gibbs (G, vars, log=False):
for var in vars:

factors = G.factors_for [var]
sample = functools.reduce(

lambda x,y: x * y, factors)
index = sample.indexOf(var)
positions = list (map(

lambda x: x.value, sample.vars))
perc = []
for i in range(0, var.K):

positions [index] = i

perc.append (sample. values |
tuple (positions)
1)

var.value = np.random.choice(
range (0, var.K),
p=(perc / sum(perc))

Figure 2: Gibbs Sampling.

If we apply this function to the given distribution with the
fixed values stated in the task we get the sampled distribu-
tions in Tables @, B, B and [@.

Anna expected observed estimated
0 0.999667 999 0.999
1 0.000333222 1 0.001

Table 4: Sample A conditioned on B, C, D (i).

Bob expected observed estimated
0 0.000999001 0 0
1 0.999001 1000 1

Table 5: Sample B conditioned on A, C, D (ii).

1.d Experimenting with Gibbs Sampling

Charlie expected observed estimated
0 0.5 523 0.523
1 0.5 477 0.477

Table 6: Sample C conditioned on A, B, D (iii).

Debbie expected observed estimated
0 0.5 505 0.505
1 0.5 495 0.495

Table 7: Sample D conditioned on A, B, C (iv).

Task. Investigate the quality of the estimated marginal
distributions for various choices of n (keep s = w = 0 for
now). To do so, compare the estimates with the exact result
as well as with the estimates provided from n independent
samples. Discuss your findings.

Now fix n = 1000 and investigate the impact of values of s
and w. Discuss your findings.

First we will look at the quality of estimates depending on
the number of samples that we take. The independent sam-
pling method takes a number of samples and a normalized
distribution as its parameters and uses a multinomial distri-
bution for random sampling that is parameterized with the
probabilities from the input distribution. It runs n random-
ized and independent experiments.

Our Gibbs Sampling function samples one variable at a time
and threats the other variables as a fixed value. In one of
the n runs it samples each variable exactly once. We reuse
the method from Section 3 here.

Afterwards we compute the L1-Error to compare the exact
result with our Gibbs- and the independent Sample. The
L1-Error uses sum of absolute difference between two prob-
abilities.

The errors are shown graphically in Figure B. The dotted
lines show the errors for gibbs-sampling and the solid lines
for the independent sampling.

0.175 4 — i,n=100 - g, n=700
g, =100 i, n=1000
0.150 4 “— i,n=400 - 9, n=1000
---------------- g, n=400 i, n=1300
— i,n=700 - g, n=1300
0.125 A
_ 0.100
S
P
0.075 1
0.050 1
0.0251
0.0001
Anna Bob Charlie Debbie

Variables

Figure 3: Gibbs and independent sampling for n samples.

We can see that the error for the Gibbs-sampled distribu-
tions is usually higher than the one for the independently
sampled distributions and decreases for both ways with the
number of samples that we take.

This can be explained by the missing burn-in phase of our
Gibbs sampling model. Usually, it is necessary to skip the
first examples to make the distribution "forget” its initial
state [B, p.856f.]. It is also more likely to get a skewed
distribution if you take a little number of samples due to
the randomness. If many samples are collected the initial
randomness averages out and approximates the true distri-
bution [@, p.96f.].

We conclude that an increasing number of samples decreases
the error and the sampled distribution approximates the ex-
act distribution for larger n.

Now we will look at the influence of the warm-up (burn-
in) phase and the skip. A warm-up of m steps means that
the first m samples are simply dismissed and the collection
of samples starts afterwards. The skip parameter specifies
the number of runs that are ignored between runs that are
used for sampling. A higher skip parameter means that the
samples that are taken are more independent than on sub-
sequent Gibbs-sample-runs and reduce the autocorrelation
that is usually observed in Gibbs-sampling.

The errors are shown in Figure @ where dotted lines again
represent the Gibbs-sampled errors.

— i, w=50,5=50 - g, w=250, s=250
0.06 4 g, w=50, s=50 — i, w=250, s=450
' — i, w=50, =250 g, w=250, =450
----- g, w=50, s=250 — i, w=450, s=50
0.05 H —— i, w=50, s=450 ----- g, w=450, s=50
----- g, w=50, s=450 — i, w=450, s=250
0.04 1 J i, w=250,s=50 - g, W=450, =250 _~
= e g, w=250, s=50 i, w=450, s=450
2 i, w=250, 5=250 ----- g, w=450, =450 -
W 0.03
0.024 Ry
0.01 4
o004 ~ e
Anna Bob Charlie Debbie

Variables

Figure 4: Gibbs and independent sampling for different
warm-up and skip.

After the addition of a warm-up phase and skips we can not
distinguish between the independently and Gibbs-sampled
distributions anymore. This supports our initial intuition
about the effects of a warm-up phase and the skip phase.
The larger both parameters are, the more should our Gibbs-
sample resemble the independent sample.

2. FACTOR GRAPHS AND NAIVE BAYES

The markov network graph and factor graph for a general
Naive Bayes model can be represented as in Figure B. We
can see that all features X are conditionally independent to
each other given Y.

Markov network graph Factor graph

F

‘f Y\‘l ‘/' Y\‘
I
| @
x) (0e) o (o) () 0e) o (X0

Figure 5: General Naive Bayes Representation.

2.a Sample label once
Task. Suppose we use Gibbs sampling to sample P(Y|X)
once. Describe informally the result.

As already displayed on the right hand side of Figure B the
variable Y depends on all variables X and, therefore, has a
common factor with each of those variables. To sample from
Y we need to compute the product of all factors that include
Y, which is, in the Naive Bayes network, every included
factor.

D
[[¢:(v:Xi) = P(Y, X1, X2, ..., XD)
=1

This is equal to the full joint distribution of the network
[2, p.104f.], which can be extremely large and infeasible to
compute efficiently [@, p.477].

Assuming that we are able to compute the full joint distri-
bution we would get a random sample in the range [0, 9]
with the probabilities that we looked up in the full joint
distribution table based on the values of all variables in X.

2.b Sample label n-times

Task. Suppose we compute n Gibbs samples yi1, ..., y, by
sampling P(Y|X) n times using Gibbs sampling. Are these
n samples dependent or independent (conditioned on X)?
Discuss briefly.

If we sample the P(Y|X) multiple times the resulting values
Y1, ...,Yn are independent of each other conditioned on X,
because they are not used to compute the probability for a
randomized sample y;. The autocorrelation between sam-
ples in Gibbs sampling stems from the fact that all values
are kept constant except one. If only one value is sampled
it is still randomized based on the other, fixed parameters.

2.c Sample input
Task. Suppose we compute a Gibbs sample of P(X|Y).
Describe informally the result.

If we sample some input values x1,...,xp exactly once per
value we will get a random pixel color per value with the
probability that the trained Naive Bayes model assigned this
pixel for the specific value for Y. Our graph model encodes
the Naive Bayes assumption, which means that every sam-
pled value z; is independent of all other values and, there-
fore, it does not make a difference if they are initialized to
zero or already sampled.

2.d Sample input n-times

Task. Suppose we compute n Gibbs samples x1,...,xp by
sampling P(X|Y) n times using Gibbs sampling. Are these
n samples dependent or independent (conditioned on Y)?
Discuss briefly.

As we already said in Section P4 all input variables z1, ..., zp
are conditionally independent given Y. This means that the
probability that we see a specific value for a sample x; is only
depending on the label y and not on the other variables. It
makes no difference if we sample once or multiple times. The
generated feature vectors will not be correlated.

2.e Sample input and label

Task. Suppose we compute n Gibbs samples (y1,X1), ..., (Yn,
by sampling P(X,Y’) n times using Gibbs sampling. These
n samples will be dependent. Do you expect to see each
class in roughly {5 samples? Why or why not?

Let’s assume that we first sample an input feature vector
from a given label and then sample turn wise. The first
input vector will resemble the input label and the next sam-
pled label will likely be closely related to the generated fea-
ture vector. We, therefore, have a correlation between the
generated samples.

As we have discussed in Section [d it is possible to reduce
this correlation by introducing a skip and using a warm-
up phase to "forget” our initial input. This may suffice to
approach the true distribution of roughly {5 samples per
category.

Some number are very different from others, e.g. 1 and 7
compared to 0. I would expect we see numbers that are
similar to our initial input more often than ones that are
highly different, although this effect may reduce for a very
large number of samples.

2.f Naive inference

Task. Can we run (in feasible time) naive inference on this
factor graph? Can we eliminate all variables in X7 Or just
variable Y? In each case, why or why not?

We can not run naive inference on the graph for the same
reason that it is not possible to sample Y. We need to
compute the full joint distribution which would have a com-
plexity of O(2") for binary variables - and our variables are
not binary.

It is not feasible to eliminate all variables in X as we would
need to create the corresponding factors and marginalize the
variable out which also has an exponential complexity and
blows up quickly.

The same holds true for Y as all values in X depend on it
and have to be taken into account.

3. CONDITIONAL RANDOM FIELDS

Task. The goal of this assignment is to apply linear-chain
conditional random fields (CRF) to a simplified variant of
the named entity recognition task. We use the Reuters-128
dataset for this task. The dataset contains multiple docu-

ments, in which each word is annotated with a label indi-
cating whether the word is part of a named entity (label=1)
or not (label=0).

3.a Additional Features

Task. Provide additional features to the CRF that help to
improve prediction performance. Which prediction perfor-
mance can you achieve?

The initial feature set that is already included in the code
samples achieved 0.96 for precision, recall and the F1-Score.
It included features like the Part of Speech (POS) Tag for
the current, the previous and the next word and the position
in the sentence (beginning or end). In this section we will
try out more features to improve the prediction accuracy of
our model.

One feature that comes naturally to the mind when talking
about named entities is the capitalization. Usually the only
thinks that are capitalized in english sentences, excluding
the first word, are special entities. As we already have a
feature that tracks if the word is the first in a sentence we
only focus on capitalization and add it.

An additional feature might be that named entities often
consist of multiple words, e.g. "Deputy U.S. Trade Repre-
sentative Michael Smith”, which may indicate that a capi-
talized word followed by another one means that both are
part of a named entity. We introduce the feature "neighbo-
rAndSelfCapitalized” that checks if the current word and the
word in front or behind are capitalized. We do not use a big-
ger scope, because Tkachenko and Simanovsky found that
for most features a sliding window of three words provides
the best result [8] and it would increase complexity.

We also check if the word contains any digits [0, 1, ..., 9],
numbers [one, two, ..., nine] or any other non-alphabetical
characters, e.g. $, %, ;, @ etc. This may include non-
standard words that are sometimes used for corporation
names or product names, e.g. "OneDrive”, “cloud9” or "@Home
Network”.

The last included feature is about suffixes that usually in-
dicate a noun, like -ness, -ship or -ion. Here we use the
cambridge dictionary™ for a list of possible suffixes.

Applying this features we get an improvement 0.02 for the
precision in predicting true labels and an improvement of
0.01 for the overall F1-Score. As the initial estimate was
already pretty good, this is a solid improvement.

3.b Feature Inspection

Task. Investigate the importance of each feature for pre-
diction by inspecting its weight. Which features are impor-
tant? Is it intuitive to you why these features are important?
Which of your newly added features from a) helped most?

The most important features are related to punctuation marks.
If a feature has a trailing comma or a leading opened bracket
it is more likely to be a named entity (weight 6.70205 and

L https://dictionary.cambridge.org/suffixes

https://dictionary.cambridge.org/grammar/british-grammar/word-formation/suffixes

4.19538, respectively). A closed bracket in front an indica-
tor for a non-named entity (weight 2.13726). It seems very
intuitive that a word before a comma is a named entity,
as it is likely that the following relative clause describes the
entity in more detail. After the closed bracket it is also intu-
itive that a non-named entity follows, because the sentence
is usually continued after the insertion.

Although we initially estimated that a digit in the name is
a sign of a named entity the weights show that it is more
likely to be something else (weight 3.38014). The weight
is similar to the preposition and verb features that are also
strong indicators for a label of 0.

The strongest self-created feature that indicates a label of 1
is as expected the capitalization with a weight of 2.45379.

All in all most of the features behave as expected and lead
to a solid F1-Score with a slight improvement related to the
newly added ones.

4. REFERENCES

[1] P. D. Hoff. A first course in Bayesian statistical
methods. Springer texts in statistics. Springer,
Dordrecht; Heidelberg; New York [u.a.], 2009.

[2] D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques - Adaptive
Computation and Machine Learning. The MIT Press,
2009.

[3] K. P. Murphy. Machine Learning: A Probabilistic
Perspective. The MIT Press, 2012.

[4] S. J. Russell and P. Norvig. Artificial Intelligence: A

Modern Approach. Pearson Education, 2 edition, 2003.

M. Tkachenko and A. Simanovsky. Named entity

recognition: Exploring features. In 11th Conference on

Natural Language Processing, KONVENS 2012,

Empirical Methods in Natural Language Processing,

Vienna, Austria, September 19-21, 2012, pages

118-127, 2012.

5

	Inference in Factor Graphs
	Naive
	Variable Elimination
	Gibbs Sampling
	Experimenting with Gibbs Sampling

	Factor Graphs and Naive Bayes
	Sample label once
	Sample label n-times
	Sample input
	Sample input n-times
	Sample input and label
	Naive inference

	Conditional Random Fields
	Additional Features
	Feature Inspection

	References

