Hot Topics in Machine Learning (HWS17)
Assignment 2: Naive Bayes

Steffen Schmitz
University of Mannheim
stefschm@mail.uni-mannheim.de

1. TRAINING

Task. Provide a function that trains a Naive Bayes classifier
for categorical data using a symmetric Dirichlet prior and
MAP parameter estimates.

We want to use a Naive Bayes classifier to assign proba-
bilities to each possible class-label given a new, previously
unseen datapoint. Given Bayes’ rule we say that

PY)P(X]Y)
P(X)

where P(Y|X) is the probability or our posterior belief that
Y =y for a specific datapoint x.

PY]X) = x P(Y)P(X]Y) (1)

Following Murphy [0, p.65] we can use the proportionality
of Equation 0 to predict the class-label of a feature vector x.
Therefor, we need to compute the class-conditional densities
P(X|Y) for each class y and the prior class probability P(Y).

To compute the prior we can maximize the Multinomial dis-
tribution which would lead to a Maximum Likelihood Esti-
mate (MLE) that is equal to the relative frequencies of each
category in the training data. This can result in a zero-count
problem, when a category does not appear in the test data.
Using a symmetric Dirichlet prior we obtain the Maximum
a Posteriori estimation (MAP) that is computed as

mta—1ne+a—1...ng+a—1
n+K-a—K

with @ € RT and o = 1 being equal to the MLE.

QJ\/IAP =

(2)

The Python implementation is shown in Figure .

Compute the priors P(Y)

num = np.bincount(y) + alpha — 1
denom = y.size + K % alpha — K
priors = np.divide (num, denom)

Figure 1: Prior class probability.

For the class-conditional densities we compute the number
of occurrences of each feature for every class and apply the
same formula as above.

We combine the implementations in Figure @ and Figure D
to define the nb_train method that returns both results in
logarithmic form.

cls += (alpha — 1)
for i in range(C):
indizes = np.where(y == i)
for index in indizes [0]:
for d in range(D):
cls[i][d][X[index][d]] 4+=1

for d in range(D):
cls[i][d] = np.divide(

cls[i][d],
np.sum(cls [i][d])

)

Figure 2: Class-conditional densities.

2. PREDITION

Task. Provide a function that takes your model and a set of
examples, and outputs the most likely label for each example
as well as the log probability (confidence) of that label.

In this exercise we will implement a function that takes in
a model that we trained with the function from Section 0O
and use it to compute our belief that a new feature vector
x belongs to a specific class.

We know from Equation @ that we need to compute the prod-
uct of the prior class probability and the class-conditional
densities to obtain the probability that a feature vector x
belongs into class y. If we do this computation in logarithm-
space we obtain the log-likelihood and can use sums instead
of products. This leads to Equation B [, p.83].

C D C
(X, y10) = nelogme+» > > loglfielzi; (3)

Jj=1c=11iy;=c

We compute the log-likelihood for each possible class for
each feature vector x and use the maximum result as our
prediction.

3. EXPERIMENTS ON MNIST DIGITS DATA

3.a Accuracy

Task. Train your model with a = 2 on the MNIST training
dataset, then predict the labels of the MNIST test data using
your model. What is accuracy of your model?

If we create a model and make predictions as explained in
Section B we obtain an accuracy of 83.6% on the MNIST-

dataset”. This is equal to the accuracy that we get by apply-
ing the Multinomial Naive Bayes algorithm from the scikit-
learn Python package®. The scikit-learn Bernoulli Naive
Bayes program performs a little better and has an accuracy
of 84.1% on the testset.

Given that the result is the same as the scikit-learn imple-
mentation we can conclude that our Naive Bayes implemen-
tation is reasonable.

Nevertheless it should be possible to get much better pre-
diction results. The TensorFlow documentation states that
a result of 92% accuracy is fairly bad for a simple neural
network and that they can get results of around 99.2% with
a Multilayer Convolutional Neural Network®.

3.b Error discussion

Task. Plot some test digits for each predicted class label.
Can you spot errors? Then plot some misclassified test digits
for each predicted class label. Finally, compute the confu-
sion matrix. Discuss the errors the model makes.

First, we look at the predicted classifications of a sample
of images and later analyse the confusion matrix. Figure B
shows some images from the testset grouped by the predicted
class label. This Figure contains images with a wrong label
and images with a correct label. Due to the accuracy of
83,6% we would expect 125 of the 150 images to have the
correct label (Actual: 24 misclassifications).

golololololaolojololo]olofol o]
-IAAnBnEannnonn
~ B E1 2 E1E] & P El E El E] EI Y EY
-HHEIHEHHNHEISEHEIH
- [I A) I 1 2) K I 2 [[T A
gs|sisislolslslslss|3|cls]s]
gelelofololblolulclelslclele]el
~ Il il ivd Vi A (1 w1 2 Wl WA) I Wl R Y
- HHEEHBEEBEHAEAEEE
dvl2lslelzlslalvlala]qlala]s]s]

Figure 3: Digits grouped by predicted label

We can see that most of the misclassifications share some
characteristics with the surrounding data and for some im-
ages it is even for a human hard to classify the number
correctly. Compare for example the images in the first col-
umn for images labeled as "4” and ”9”. Although they look
very similar they are classified differently and the label is
ambiguous.

Now we will look at the classification report (Figure @) and
the confusion matrix (Figure B) to quantify our notion of
the results. We can see in the Classification Report that

1 http://yann.lecun.com/exdb/mnist/
2 http://scikit-learn.og/MultionmialNB.html
3 https://tensorflow.org/multilayer_cnn

precision recall fl-score support

0 0.91 0.89 0.90 980
1 0.86 0.97 0.91 1135
2 0.89 0.79 0.84 1032
3 0.77 0.83 0.80 1010
4 0.82 0.82 0.82 982
5 0.78 0.67 0.72 892
6 0.88 0.89 0.89 958
7 0.91 0.84 0.87 1028
8 0.79 0.78 0.79 974
9 0.75 0.85 0.80 1009
avg / total 0.84 0.84 0.84 10000

Figure 4: Classification Report

the labels 0, 1 and 7 have the highest F1-Score (around
0.9) and are therefor predicted most accurately. This could
be explained by the shape of 1 and 7 that is very different
from the rather round shapes that all other elements have
in common. A possible explanation of the high F1-Score of
0 might be, that there aren’t many ways to write a 0, but
for example multiple ways to write a 4.

The worst F1-Score has the number 5 with a score of 0.72.
This is caused by the very low recall of 0.67. The recall is
defined as the ratio between True Positives (TP) and True
Positives and False Negatives (FN) [2].
TP

Recall = m (4)
This means that it is more unlikely, compared to all other
classes, that the classifier will detect the true class label of
an input feature vector that should be labeled as a 5.

[[872 0 3 5 3 63 18 1 14 1]
[0 1102 8 3 0 3 4 0 15 0]
[15 28 816 37 26 8 31 18 49 4]
[4 22 28 835 1 29 10 14 45 22]
[2 8 6 1 808 2 15 1 20 119]
[22 22 5 128 29 602 20 16 20 28]
[15 20 16 1 20 30 852 0 4 0]
[1 41 15 3 17 0 2 862 18 69]
[15 23 11 68 12 31 10 7 759 38]
[12 14 5 9 64 8 1 26 15 855]]

Figure 5: Confusion Matrix

We can see from the confusion matrix that there are 63 cases
where a 0 is interpreted as a 5 and 128 cases where a 3 is
predicted to be a 5. Especially the confusion between a 3
and a 5 may be explained through the various ways to write
the 5.

All in all we can conclude that our classifier is easily con-
fused by similarities between numbers that are caused by
the specific handwriting style.

4. MODEL SELECTION

Task. Use cross-validation to find a suitable value of the
hyperparameter a (of the symmetric Dirichlet prior). Also
plot the accuracy (as estimated via cross-validation) as a
function of a. Discuss.

For cross-validation we split our labeled training data into
K random folds that have a similar size. We use K — 1 of
them to train our model and the remaining one to calculate

http://yann.lecun.com/exdb/mnist/
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
https://www.tensorflow.org/get_started/mnist/pros#build_a_multilayer_convolutional_network

the accuracy of our trained model. This procedure has the
advantage that we can tune our hyperparamater without
touching our test data. If we use our optimized model on
the test data afterwards we obtain an unbiased result of how
well our model works on real or previously unseen data.

from sklearn.metrics import accuracy_score

i=20

alpha = 2

alphas = np.zeros (K)
accurracies = np.zeros (K)

for i_train, i_-test in Kf.split(X):
X_train, X_test = X[i_train], X[i_test]
y_train, y_test = y[i_train], y[i_-test]

x_model = nb_train(X_train, y_train,
alpha=i4alpha)
x_pred = nb_predict (x_model, X_test)

accurracies [1] = accuracy_score (
y_test ,
x_pred [’yhat ’]

alphas[i] = i + alpha
i 4= 1
Figure 6: K-Fold Model Selection.

Figure B shows how we approach this with K = 5. For each
fold we receive a labeled training set and a labeled test set
that we can use to calculate the accuracy. Then we create
a model and run a prediction on the test set and compare
it with the true values. In the end we save the accuracy in
a list with the corresponding alpha and afterwards we can
just look up the maximum accuracy and use the alpha at
this index.

In the notebook we try a € [2, 6] and get 82,8% accuracy as
the best result with a = 2. The results for all a are shown
in Figure [@.

0.83

0.82 1

=]

[es)

pt
L

Accuracy

0.80 1

0.79 1

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Alpha

Figure 7: « - Accuracy

S. GENERATING DATA

S.a Generation
Task. Implement a function that generates digits for a set
of provided list of class labels.

We use the log-likelihoods that are stored in our model
to create vectors, given a class label. Here we can use
np.random.choice(range(K), p=prob) to generate a random
sample with the probabilities associated with each entry of
the first parameter®. We do this generation for each element

def nb_generate (model, ygen):
logels = model[’logcels 7]
n = len(ygen)
C,D,K = logcls.shape
Xgen = np.zeros ((n,D))
for i in range(n):
¢ = ygeni]
for d in range(D):
prob = np.exp(logcls[c][d])
Xgen[i][d] = np.random. choice (
range (K),
p=prob
)

return Xgen

Figure 8: Generate data.

in the list of class labels and for each feature.

5.b Interpretation

Task. Generate some digits of each class for your trained
model and plot. Interpret the result. Repeat data genera-
tion for different models by varying the hyperparameter a.
How does « influence the results? Discuss.

The result of the digit generation is displayed in Figure B.
We can see that the resulting images look "cloudy”, but
most of them are still identifiable as the class label that
they should represent. The ”"cloudyness” can be explained

Figure 9: Some generated digits for each class

through the randomization that calculates the color or each
pixel individually without looking left or right. This means
that creating a line, where neighbouring pixels have a similar
color, is not taken into account during the image generation.

4 https://docs.scipy.org/numpy.random.choice.htm]

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.random.choice.html

If we repeat this process for increasing values of alpha, the
accuracy of our generated models decreases. While the white
dots were clustered in the center for « = 2 they appear also
around the edges of the image for increasing alphas.

Interpreting o as a pseudo count of prior observations we
can conclude that a large a leads to a larger prior belief for
each possible pixel in our image. This is caused by the usage
of the symmetric Dirichlet prior. Given more training data
we would expect the number of points that are close to the
edges to go down and to have them clustered around the
middle and to resemble to class label for closely.

This is also supported by the observation from Section @
that larger as reduce the accuracy of our predictions.

6. PREPROCESSING FEATURES AND GAUS-

SIAN NAIVE BAYES

Task. Try to find a better Naive Bayes classifier. E.g.,
you may try to preprocess features or to use a continuous
Naive Bayes classifier. Can you improve on the Naive Bayes
classifiers obtained in the previous tasks? What is the best
accuracy you can get?

6.a Preprocessing

One way to preprocess the features is to binarize them. In
our input set we deal with features in a range from 0 to 255
representing different shades of grey. If we binarize them we
may reduce the complexity and think of each pixel in the
input image as being either black or white.

We use the sklearn.preprocessing.Binarizer to make each fea-
ture either 0 or 1°.

This results in an accuracy of 84.2% which is around 0.6%
better than the accuracy on unpreprocessed data.

6.b Gaussian Naive Bayes

7. REFERENCES

[1] K. P. Murphy. Machine Learning: A Probabilistic
Perspective. The MIT Press, 2012.

[2] D. M. W. Powers. Evaluation: From precision, recall
and f-measure to roc., informedness, markedness &
correlation. Journal of Machine Learning Technologies,
2(1):37-63, 2011.

The Gaussian Naive Bayes implementation in the sklearn.naive_bayes

package assumes that all features have a Gaussian distribu-
tion and estimates the mean and variance using maximum
likelihood®.

If we use it on the unprocessed input data like in Figure
M@ we obtain an accuracy of 55.6% which is worse than our
accuracy of 83.6% for the unnormalized categorical model.

from sklearn.naive_bayes import GaussianNB
nb = GaussianNB ()

nb. fit (X, y)

yvhat = nb.predict (Xtest)

accuracy_score (ytest , yhat)

Figure 10: Applying Gaussian Naive Bayes.

The best result we obtained is 84.2% accuracy with a bina-
rized input and a categorical Naive Bayes implementation.

5 http://scikit-learn.org/Binarizer.html
6 http://scikit-learn.org/naive_bayes.html

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html
http://scikit-learn.org/stable/modules/naive_bayes.html#gaussian-naive-bayes

	Training
	Predition
	Experiments on MNIST digits data
	Accuracy
	Error discussion

	Model selection
	Generating data
	Generation
	Interpretation

	Preprocessing features and Gaussian Naive Bayes
	Preprocessing
	Gaussian Naive Bayes

	References

