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1. DATASET STATISTICS

Explore and preprocess the dataset.

1.a Kernel Density Plot

Task. Look at the kernel density plot (code provided) of all
features and discuss what you see (or don’t see).

We estimate the kernel density estimation with the gaus-
sian kde method from the scipy.stats package1. It returns
the estimated probability density function of each feature.
As described in the documentation the plot may be ”over-
smoothed”what leads to non-zero results for x < 0, although
the statistics (Output of Figure 2) show that all features
have minimal values that are greater or equal to zero.

Figure 1: Unregularized Kernel Density Plot

Figure 1 displays the result of the gaussian kde for the train-
ing dataset. The x-axis has a scale from 0 to 16000 and the
y-axis ranges from 0 to 30. We can see that almost all data
is close to zero and all features approximate zero asymptot-
ically for values x >> 0.

There are four visible spikes at x ≈ 0 that range to about
28, 15, 10 and 4, respectively. All other features are either
smaller or overwritten by the latest features.

1https://docs.scipy.org/gaussian kde

The behaviour that is observed in the graph is confirmed by
the dataset’s statistics that we get by executing the code in
Figure 2. The features 0 to 54 are percentages and, there-

# look at some dataset statistics

import s c ipy . s t a t s
s c ipy . s t a t s . d e s c r i b e (X)

Figure 2: Show statistics about the data.

fore, have a range from 0 to 1, while the other features are
counts of uppercase letters in the e-mail. Their minimum is
1 and the maximum can range into the thousands.

From this we can subsume that the current visualization is
insufficient, because a few features that can take large num-
bers overshadow the features that represent percentages. It
is hard to draw any conclusions about the data under the
current circumstances.

1.b Normalization using z-scores

Task. Normalize the data using z-scores, i.e., normalize
each feature to mean 0 and variance 1. Normalize both
training and test data. In particular, think about how test
data should be normalized.

For machine learning algorithms it is often helpful to nor-
malize or scale the features to avoid huge coefficients or the
dominance of a few features in algorithms, which use the
euclidean distance as their error function. It also makes gra-
dient descent converge faster compared to the convergence
on unnormalized data [2].

The z-score or standard score transforms the features to a
normal distribution with mean 0 and variance 1 and is com-
puted with:

z =
x− µ

σ
(1)

where µ is the mean and σ the standard deviation [4].

The sklearn.preprocessing package contains a StandardScaler
that normalizes features with the z-score 2.

Figure 3 shows how to apply the normalization to input
array X to get output array Xz. At first, is fits the mean

2http://scikit-learn.org/StandardScaler
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from sk l e a rn import pr ep ro c e s s i ng
s c a l e r = pr ep ro c e s s i ng . StandardSca ler ( )
s c a l e r . f i t (X)

# save mean and variance for later use

mean = s c a l e r . mean
var = s c a l e r . var

Xz = s c a l e r . trans form (X)
Xtestz = s c a l e r . trans form ( Xtest )

Figure 3: Normalization using sklearn.

and standard deviation to X and, secondly, transforms it
into a new array. This enables the transformation with the
same values to the test set to guarantee that the scaled value
for every input is computed alike in the training and the test
set.

The input arrays X and Xtest are transformed into Xz and
Xtestz.

1.c Normalized Kernel Density Plot

Task. Redo the kernel density plot on the normalized data.
What changed? Is there anything that ”sticks out”?

Figure 4 shows the estimated probability density functions
after normalization. The x-axis’ range is [−6σ, 6σ] and it in-
cludes negative values that are now valid due to the changes
made on the dataset. We use the six sigma range, because it
contains almost all datapoints (99,99966%). After the trans-

Figure 4: Normalized Kernel Density Plot

formations all features take values in the range [−1, 46] and
we can see in Figure 4 that some features have a positive
skew. This means that most data points of those features
are concentrated on the left side of the graph or around zero,
respectively. This is supported by the fact that the features
have a mean of zero and variation one, but show huge posi-
tive values, compared to the smallest negative value. Those
values could be some outliers that may be interesting for the
machine learning algorithm.

The new plot improved the readability and allows to make
inferences about the data. The data also points to features
or values that may become relevant for the algorithm and
the training phase.

2. MAXIMUM LIKELIHOOD ESTIMATION

2.a Effects of Rescaling

Task. Show analytically that rescaling (multiply by con-
stant) and shifting (add a constant) features leads to ML
estimates with the same likelihood if there is a bias term.
Why do you think we computed z-scores then?

In Maximum Likelihood Estimation (MLE) we try to find

a value θ̂ that maximizes the likelihood L that we see the
values observed in a given sample X[1, p.316].

Supposing that θ̂ is the MLE of θ, then we want to prove
that transforming the input by rescaling and shifting leads
to an MLE of f(θ̂) for f(θ), where f is, in our example, the
function in equation 1.

Casella and Berger show in that we get the same answer for
the likelihood if the function f is a one-to-one function. This
is called the ”invariance property of maximum likelihood es-
timators”. [1, p.319]

To show that equation 1 is one-to-one it suffices to show that
f(x) = f(y) ⇒ x = y [3].

f(x) =
x− µ

σ
= f(y) =

y − µ

σ
; · σ

⇔ x− µ = y − µ ; + µ

⇔ x = y

The z-score, therefore, is a one-to-one function and yields
the same maximum likelihood estimate.

Feature scaling or normalization is desirable, because it im-
proves the convergence of gradient descent, without chang-
ing the accuracy of the predictions [2].

2.e Compare Gradient Descent with Stochas-
tic Gradient Descent

Task. Explore the behavior of both methods for the param-
eters provided to you. Discuss!

The gradient descent converges to a fixed error in about 13
epochs and reduces epsilon to zero after about 25 epochs.
The reduction of epsilon needs the same number of epochs
in the stochastic gradient descent, but it converges faster to
the approximate minimum. It only needs about 7 epochs.
The convergence of both algorithms is shown in Figure 5.

Differences of the algorithms include that the gradient de-
scent is deterministic as it will find the same optimum in the
same number of steps, while the stochastic gradient descent
has some randomness included due to the random selection
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Figure 5: Gradient Descent vs Stochastic Gradient Descent

of the samples. The number of steps to converge and the ex-
act optimum may, therefore, change between different runs
of stochastic gradient descent.

Another feature of stochastic gradient descent is that it re-
duces the memory footprint. While gradient descent com-
putes the updated weights and updates them all at once, the
stochastic gradient descent does this incrementally.

As we can see in Figure 5 the error computed by stochas-
tic gradient descent is also lower than the gradient descent
error. We would expect them to converge to the same op-
timum. The error might be caused by a numerical trick in
the definition of the log-likelihood function, which we use to
avoid the division by zero.

3. PREDICTION

Task. Complete the predict and classify methods for the
predicted spam probability and predicted class label, respec-
tively. Explore the models that you fit in the previous task
and discuss. Study the composition of the weight vector:
which features are important, which are not? Is this intu-
itive?

For gradient descent and stochastic gradient descent we get
a parameter vector wz gd and wz sgd, respectively, that is
fitted to our normalized training set. To make predictions
we multiply the test set Xtestz with the fitted parameter
vectors and compute the sigmoid function of the result. If
the result for a feature is bigger than 0.5 we set it to 1
and 0 for all other results. The implementation is shown in
Figure 6. Using the scikit-learn classification-report3 we get
the Precision, Recall and F1-Score for both, stochastic and
normal gradient descent. The results for gradient descent
and stochastic gradient descent are similar with only a 1%
deviation between them. See Figure 7 for more details.

More interesting is that the fitted parameter vectors of gra-
dient descent and stochastic gradient descent differ. If we
compute the statistics for each parameter vector as described
in Figure 2 we can see that the gradient descent has a big-

3http://scikit-learn.org/classification report

# Returns vector of pred. confidence [0,1]

def pr ed i c t ( Xtest , w) :
return sigma ( Xtest @ w)

# Returns vector of predictions {0,1}

def c l a s s i f y (X, w) :
def pred (x ) :

return 1 i f x > 0 .5 else 0
return np . v e c t o r i z e ( pred ) ( p r ed i c t (X, w) )

Figure 6: Methods to predict and classify the test set.

Figure 7: Precision, Recall and F1-Score

ger variance (4.45) in its parameters and has positive skew,
while the stochastic gradient descent has a variance of 1.52
and a small negative skew (-0.16).

In the parameter vector of gradient descent there are some
features that have a high impact. Features 6, 7, 15, 19, 22,
23, 52, 56 have a high positive impact and indicate spam,
while features 24, 25 and 41 have a big negative impact
and, therefore, indicate not-spam. They correspond to the
frequency of remove, internet, free, credit, 000, money, $ and
the total length of consecutive uppercase letters in the case
of a positive impact and hp, hpl and meeting in the case of
a negative impact.

As the dataset is provided by the Hewlett-Packard Labs
which may be abbreviated as hp or hpl the negative im-
pact of those acronyms is not surprising. A high frequency
of the word meeting is also expected in non-spam e-mails
as spammers usually have a low interest in meeting their
recipients.

On the other hand, the occurrence of internet, free, credit
and money in combination with dollar-signs and many con-
secutive uppercase letters is what we would expect in spam.

We can draw the conclusion that the weights that are as-
signed in gradient descent do not come as a surprise and fit
the common estimate of spam e-mails.

The parameter vector of stochastic gradient descent shows
approximately the same results, but overall, has a smaller
variance. The outliers are the same, but the overall weights
are smaller.
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4. MAXIMUM APOSTERIORI ESTIMATION

4.b Effect of Prior

Task. Study the effect of the prior on the result by vary-
ing the value of λ. Consider at least the training data log-
likelihood, the test data log-likelihood, and the prediction
accuracy. Are these results surprising to you?

For an initial parameter configuration of w, we can see that
the log-likelihood takes on huge values for both the training
and the test data. The bigger λ is, the bigger is the penalty
on large coefficients in the weight vector and the lower the
chance of overfitting the data. An issue may be that the
data is underfit for very large values of λ.

We can see in the results in Figure 8 that the F1-Score in-
creases for bigger lambdas, but also decreases after a certain
threshold.

Figure 8: Precision, Recall and F1-Score for different λ

A way to compute a good value for λ would be a cross-
validation set that is used to compute different results and
optimize the F1-Score, by trial-and-error. The expected ac-
curacy on unknown data can still be calculated through the
test data afterwards.

4.c Composition of Weight Vector

Task. Study the composition of the weight vector for vary-
ing choices of λ (try very large values). Try to explain what
you saw in the task above.

For ever increasing values of λ, the mean and the variance of
the values of the parameter vector approach zero. This is ex-
pected as a high value of λ translates into a high penalty for
high values of the parameter vector. The model, therefore,

is prone to underfit the training data and make biased deci-
sions. This explains the worse F1-Score that we can observe
in section 4.b.

5. EXPLORATION

Task. Explore variants of preprocessing and logistic regres-
sion further.

See the Jupyter Notebook for further exploration.
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