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1. CUTS

We start by computing the values of cut (cut), ratio cut
(rcut) and normalized cut (ncut) for a given clustering of
the m = 500 digits into k& = 10 clusters.

1.c Magnitude of different cuts

Task. Run your cut function on the cluster . test clustering
provided to you. Observe that cut > rcut > ncut. Why is
this the case? Is this always true?

Considering a non-overlapping, complete clustering C =
{C4,...,Ck} of the vertices in V. Define
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Now, we can argue that
2 < |Cx| < vol(Cy) (1)

should hold for almost all values Cy € C. In our example all
|Cx| have a magnitude of 10" and all vol(C}) have a magni-
tude of 10*, which means that the assumption in Equation O
holds.

Looking at > x| 1/|Cx| and S5 1/vol(Cy) we see that
they take their minimum, if all |Cy| or all vol(C}) coincide,
respectively [, ¢f.p.9]. On the other hand, this means that
the sums are large, if the clusters are skewed. Then, the
assumption in Equation (M) is violated and the cut function
takes a high value for all three variants.

In our example, the different clusters have approximately
equal size and this is also represented in the resulting cut
values.

2. SIMILARITY GRAPHS

To construct a similarity graph, we make use of the Gaus-
sian kernel (and vary parameter o) as well as the various
neighborhood graphs we discussed in the lecture.

2.a Varying Sigma

Task. Compute the full similarity graph using o = 50.
Study the distribution of the resulting similarities. Is o = 50
a good choice? Try to find a good setting for o by trying
both smaller and larger values. Discuss!

In our notebook we try the following four settings: o €
{10, 30, 50,70}. We can directly see that a value of o = 10 is
far too small, because there is almost no similarity between
any numbers. Furthermore, the histogram shows us that
there are almost no values exceeding a similarity of 0.2.

For 0 = 30 we get the matrix shown in Figure 0.

Figure 1: Matrix for o = 30

The inherent structure of the matrix is clearly visible and
we can directly identify the different clusters of numbers
between which the similarity is large. The bell curve in the
similarity histogram centers around 0.2 and most values are
in the range from 0 to 0.5. For the moment, the resulting
matrix seems like a useful result.

Next, we will look at ¢ = 50. The matrix is shown in Fig-
ure @ and the corresponding histogram in Figure B.

We can still distinguish the different clusters in the matrix,
but all other regions are also brightly green. The histogram
centers around 0.6, which tells us that the expected similar-
ity between two vertices is rather high.

Compared to the resulting matrix for ¢ = 30, 0 = 50 does
not lead to an improvement. Thus, the calculated similarity
between two randomly selected vertices is likely to be high,
even if they are dissimilar.



Figure 2: Matrix for o = 50
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Figure 3: Histogram for o = 50

Increasing the value for o further, makes the result even
worse as we can infer from Figure @.

value

Figure 4: Histogram for o = 70

Overall, the best result in our opinion provides the similarity
matrix for o = 30, as it clearly shows the clusters per number
without assigning a high similarity to points that belong to
different clusters.

2.b Neighborhood Models
Task. For o = 50, find the smallest € such that the e-
neighborhood graph is connected. Note that you can use

the magnitudes of the smallest eigenvalues of the Laplacian
to judge whether or not the graph is connected. Now find
the smallest k£ such that the symmetric kNN graph is con-
nected, and the smallest k£ such that the mutual kNN graph
is connected. Plot the resulting similarity matrices. Are
they different? If so, why? Discuss!

”A graph [...] is connected [...] [if] there is a path from
any point to any other point in the graph” [2]. If we arrange
all the eigenvalues of the Laplacian in non-increasing order,
ie.

AM2>2X > .2 12 A =0
we can apply the matrix-tree theorem and say that the graph

is connected, iff A\,—1 > 0 [B, cf.p.3].

In our notebook we pick some parameters for € and k and
increase or decrease them until we find the lowest value for
which A\, _1 is greater than zero.

The resulting similarity matrices are shown in Figure B, B
and @. The e-neighborhood and mutual kNN graphs look

Figure 5: e-neighborhood

Figure 6: Symmetric kNN

similar and have approximately the same shapes and den-
sities. Their plot contains ten obvious clusters, each rep-
resenting one number, and some noise in the top right and
bottom left.



Figure 7: Mutual kNN

On the other hand, the symmetric kNN graph has very little
green regions, except for the clusters we already recognized
in the other two plots.

Our assumption is that the symmetric kNN graph is more
likely to jump to other clusters and, therefore, connects the
whole graph more quickly, while the mutual kNN and e-
neighborhood graph completely connect a cluster, before
jumping to another one. This explains why the similarity
matrices for mutual kNN and e-neighborhood have a higher
density around the actual clusters and why they show more
noise.

2.c Parameters for Symmetric KNN

Task. For the symmetric k-nearest neighbor graph, man-
ually determine values for o and k that appear suitable to
you.

In Section & we found that o = 30 is a good choice and a
general recommendation for a first pick of & is log(n), which
is 2.69 or roughly 3 in our case. Using this as our first pick
we obtain the similarity matrix in Figure B. From the eigen-

Figure 8: Symmetric kNN with s=30 and k=3

values of the Laplacian we can directly see that the graph is
not connected, because A,_1 is zero. The resulting matrix
looks even more sparse than the parameter configuration
that we used for Figure B.

”In general, if the similarity graph contains more connected
components than the number of clusters we ask the algo-

rithm to detect, then spectral clustering will trivially re-
turn connected components as clusters. Unless one is per-
fectly sure that those connected components are the correct
clusters, one should make sure that the similarity graph is
connected” [M, p.21]. Although we are convinced that each
connected component belongs into a cluster, we want to be
absolutely sure. Following the insights from von Luxburg,
we, therefore, should aim for a connected graph that is more
densely populated than the previously computed ones.

We will now try to increase the number of clusters until
the graph is fully connected and find that k = 4 leads to a
connected graph and that the graph looks even more similar
to the one in Figure B. Increasing o to 80 also results in a
similar matrix and the graph is still connected.

Hence, we will continue to increase k, while keeping o = 30,
because an increasement of o had no visible effect. With
increasing k the resulting matrix approximates the results
that we got for e-neighborhood and mutual kNN in Sec-
tion EH. The clusters become more dense, but the noise
also increases. In our opinion, £ = 25 and ¢ = 30 is a good
parameter combination that captures the clusters well, while
keeping the noise low. The result is shown in Figure @.

Figure 9: Symmetric kNN with s=30 and k=25

2.d Influence of sigma

Task. Consider any dataset in Euclidean space. Suppose
that we use the Gaussian kernel with parameter o to ob-
tain similarities and subsequently construct a symmetric k-
nearest neighbor graph. Describe what changes to expect in
the so-obtained graph when we increase or decrease o. Is
there anything that does not change?

The Gaussian kernel is defined as

L —85
wW;j = exp 552

and the parameter o controls what is considered local. This
function assigns a value of 1 if the distance is 0 and ap-
proximates 0 asymptotically for even larger values. We can
control the steepness of the decline with o.

The Gaussian kernel function is approximately linear around
its inflection point and flattens out at the edges. We assume
that a change in the value of ¢ mostly affects points that
are very close.



We suppose that z1 and z2 are part of a dataset in Eucledian
space with xo. If both are far away, both weights w1 and
woz will be small for any o and negligible, because they
are unlikely to be neighbors. In the case that the distance
between x1 and x2 is around the inflection point for any o
the resulting weight will reflect the distance between them
and zo almost linearly and, therefore, will not have a big
influence. We only recognize a significant influence of ¢ on
the similarity, if both points are very close to xo. In this
case, they will seem far apart for small os and the distance
is amplified due to the steep decline. Alternatively, they
may appear closer together for large values of o, because the
Gaussian kernel is approximately flat for small distances.

With symmetric kNN it is guaranteed that each vertex has
at least k£ neighbors. We assume that we have far more
connections for a large o, because nearby matrices seem even
closer due to the flat behavior of the kernel function. On the
other hand, we expect the number of neighbors to drop for
very small . The only thing that does not change is the
similarity that we expect for vertices that are far apart. We
should always assign a small similarity value to them.

3. SPECTRAL CLUSTERING

In this experiment, we try to cluster the digit data into 10
different clusters; the "optimal” clustering assigns the same
digits to the same cluster, and different digits to different
clusters.

3.a k-means

Task. First cluster the digits data using k-means on both
the raw data and the first 10 principal component scores.
Visualize the result and compute the accuracy. Are the re-
sults good? Which “errors” are made?

Running k-means on the raw input data with £ = 10 clusters
results in an accuracy of 82.4%. From the confusion matrix
we see that many 9s are incorrectly labeled as 3s, 1s are
often confused for 8s and k-means often predicts a 4 for a
9. Although the input dataset is balanced, k-means labels
more than 80 images as 3 and less than 40 images as either
1 or 4.

k-means works best, if all clusters are of globular shape and
have a strict separation. Yet, the results indicate that this
is not the case for the digits dataset. Especially the clusters
for 9 and 3, 1 and 8 and 4 and 9 seem to overlap.

We observe the same behavior for the k-means clustering on
the first 10 PCA scores. The accuracy is down to 80% and
the confusion matrix is similar to the previous one. We con-
clude that the effect of overlapping clusters is only amplified
by the reduction to ten dimensions.

3.b First run of Spectral Clustering

Task. Use your parameter settings of task 2c¢) and run spec-
tral clustering. Compare the result with the results obtained
above. Which method worked best? Did your parameter
settings produce good results? Which ”errors” are made?

Using spectral clustering we obtain an accuracy of 83.6%
and, therefore, see an improvement on both of the results

we obtained in the previous subsection. The combinations
of problematic pairs that we identified in Section B3 are
critical, again. Nevertheless, the improvement shows that
spectral clustering is an improvement over k-means on the
raw data.

Looking again at Figure H, we also see that most of the noise
is in the 4th, 9th and 10th row. This may indicate that those
regions still are very similar and that the graph is not sparse
enough. Hence, we draw the conclusion that our selection
for k was too big and that we should try a smaller k for our
optimization attempt that follows in Section B-d.

3.c Eigengap Heuristic

Task. In practice, we may not know the optimal number
of clusters. Use the eigengap heuristic to estimate a good
choice for the number of clusters. Discuss!

For this task, we will again use the parameter combination
from Section P44, k = 25 and ¢ = 30. The 100 smallest eigen-
values are plotted in Figure M. According to the eigengap-
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Figure 10: Last 100 eigenvalues

heuristic we should select a number of clusters k such that
Aly..., Ap—k are large and A\p—g+1,...,An are small. In the
eigenvalue chart, we see that there is a gap after the last 7
and after the last 10 eigenvalues.

Taking the first larger gap as our guidance, we would select
k = 7 for the clustering algorithm. This also fits our obser-
vation from the previous subsection that 9 and 3, 1 and 8
and 4 and 9 seem to overlap. Applying the eigengap heuris-
tic, we effectively find about seven clusters with the current
parameter setting.

3.d Parameter Tuning

Task. Now "tune” the parameters of spectral clustering with
10 clusters to obtain an accuracy above 0.88. Why do you
think that the so-obtained parameters work well?

First, we will follow our intuition from Section BXH and de-
crease the number of k that we use for our symmetric kNN
graph. We already found that the graph is connected for
k = 4 and while trying values around k£ = 4, we find that
k = 5 yields a good result with an accuracy of 89.6%. Hence,
we draw the conclusion that spectral clustering works best
if the graph is very sparse, but connected.



Starting from o = 30 we first go up to 50, 100 and 200
without seeing any change in the accuracy and afterwards
down to 5 and 10. For o = 5 the accuracy is very low and
an indication that o is too small to reflect the similarities
accurately. With this parameter setting every point seems
dissimilar to every other. On the other hand, we improve
our accuracy to 91.4% with o = 10. We assume that this
parameter setting reflects the locality in the graph in the
most accurate way. Lower values of o lead to a low similarity
for too many points, while a higher value of o probably
returns a high similarity for points, even if they belong into
other, nearby clusters.

The resulting matrix with our optimized parameters is shown
in Figure . Surprisingly, this matrix is very sparse. This

Figure 11: Symmetric kNN with s=10 and k=5

shows that our assumptions from Section ZZA are not cor-
rect and it is an advantage if the clusters are not densely
connected.

Overall, a small k£ that connects the full graph, while main-
taining sparseness, seems to be a good choice and ¢ should
be selected in such a way that it allows neighbors be close,
while returning a low similarity for points that are further
away.
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