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1. TOPIC MODELLING WITH NMF
We will first apply NMF to the normalized newsgroup data
to discover latent topics. Start by computing the NMF op-
timizing the KL divergence for r = 4 factors. The output of
this step will be two unnormalized matrices L̃ and R̃.

1.a Evaluation of NMF results
Task. Study the top-10 terms in the right-hand factor ma-
trix R̃. Are the results good? To evaluate the results, you
must consider the terms associated with each topic and ar-
gue why you think they do or do not constitute a meaningful
topic.

The rank r = 4 non-negative matrix factorization on our
document-word matrix produces two matrices L̃ and R̃. Ac-
cording to the lecture slides, we can interpret the matrix R̃
as a set of parts that are assembled with the help of matrix
L̃ to reconstruct our original matrix.

In our setup the matrix R̃ has four rows and a column for
every word in the original matrix D. The words with the
highest value per row indicate which words are representa-
tive for the row and, therefore, for the topic that is repre-
sented by the row.

Our original matrix D includes four topics, Medicine, Space,
Christianity and Cryptology, and it is easy for us to assign
the rows of R̃ to one of the topics.

god, christian, peopl and church are the four most important
words in the fourth row and clearly represent the Christian-
ity topic. truth, thing and homosexu also appear in the
top-10 terms. Yet, their relation to the christian religion is
not directly obvious, but having in mind that the original
matrix represents news we can see the religious context.

This relationship is even more obvious for the other cate-
gories. space, launch, orbit and nasa identify Space, diseas,
doctor, medic and patient indicate Medicine and encrypt,
secur, govern and chip point to Cryptology. We can even
deduce the topics without prior knowledge about the topics
covered by our initial matrix.

As before, the allocation of some words is less unambiguous.
peopl is one of the highest rated words in almost all of the
categories. It is only absent in the topic Space. Therefore,
it serves as a good example for words that can be used in
multiple contexts. Hence, it is infeasible to derive the whole

topic of a text by looking at only one of the top terms, but
a combination of frequent words makes guessing the main
idea of the text very easy.

We conclude that the non-negative matrix factorization pro-
duces a useful result that reflects the covered topics well.

1.b NMF Reconstruction
Task. Study the reconstructed matrix. Does it look like
you would have expected? Which aspects are covered well?
Which are not?

The original matrix is shown in Figure 1 and the reconstruc-
tion in Figure 2. For the interpretation we need to keep in
mind that the data is sorted by newsgroup. This is not ex-
ploited by the NMF, but means that rows which are close
are likely to respond to similar words.

Figure 1: Original matrix

We can see a potential cluster in the top left corner of the
original matrix, two in the bottom right and one around
the middle of the matrix, shifted a little to the top right.
Keeping in mind that each topic belongs to a quarter of the
vertical space, we assume that those clusters contain the
top-10 words per topic that we analyzed in the previous sec-
tion.

Figure 2: Rank-4 NMF reconstruction
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The reconstruction retains only the brightest points and
lines from the original matrix and amplifies the observed
structure from the original matrix. It is even more obvious
where one topic ends and another begins. The resulting im-
age seems to consist exclusively of vertical and horizontal
lines without the random ”noise” points that are observed in
the original matrix.

We expected the reconstruction to keep the most important
structure of the original matrix, while removing noise. This
is exactly what we get from it. Nevertheless, we are surprised
that the outline on the right of the original matrix is not
preserved, as the step-like decline also seems to contribute
to the overall structure.

Overall, the most prominent clusters are retained, while less
bright points and clusters are removed. The distinction be-
tween the different topics is easier with the reconstructed
matrix.

1.c Evaluation of SVD results
Task. Take the rank-4 truncated SVD of the data and study
the decomposition along the lines mentioned above. Com-
pare!

In the first part of this section we will look at the top-10
largest, absolute values of each row from the right singular
vectors and in the second part we will evaluate the rank-
4 approximation based on the singular value decomposition
and compare it with the original matrix D.

The natural interpretation for the right singular values is
that if two rows have a similar value in a column of V the
attribute is somehow similar. If we try to apply this interpre-
tation to our dataset, we see for example that diet has a high
positive value in the second row and a large negative value
in the third row. We conclude that the second and third row
are somehow dissimilar and infer that they represent differ-
ent topics. It would be possible to extend this analysis to
multiple columns and increase our confidence that all rows
are dissimilar from each other, but that would not help our
understanding.

Observing the last row, we see that religious terms score
high negative values, while cryptological terms score a high
positive value. In this case the distinction of topics based
on the SVD is possible, but all other rows are much harder
to interpret. This may be the case, because religion is the
only non-scientific topic covered in the original matrix and,
therefore, easier to distinguish.

All in all, the combination of positive and negative weights
makes the interpretation of the SVD less intuitive and mean-
ingful.

Now, we will focus on the rank-4 approximation of our orig-
inal matrix based on the SVD. The reconstruction is visu-
alized in Figure 3.
In general, the resulting reconstruction looks similar to the
rank-4 approximation produced by the rank-4 NMF factor-
ization. This is expected, because both factorizations try to
minimize the difference between the reconstruction and our
original matrix and, thus, follow the same objective.

Figure 3: Rank-4 SVD reconstruction

The biggest difference between the two reconstructions is
that the SVD reconstruction contains negative values as can
be infered from the scale next to the chart. Examining the
matrix closely, we can see a red dot around the middle on the
right hand side. Although there are no negative values in the
original matrix they are included in the reconstructions. In
this case, unrealistic values help to minimize the difference
elsewhere and are therefore included.

We draw the conclusion that the SVD reconstructs the orig-
inal matrix very well, but at the cost of uninterpretable val-
ues. The negative values that occur can not be interpreted
as a count or percentage and are, therefore, useless. The
NMF does a much better job at capturing the underlying
topics and providing a more intuitive way of interpreting the
weighting of the attributes. It also provides a good recon-
struction of the original matrix which is easily interpretable
by using the values as probabilities for a word to appear in
a document.

Using a NMF for counts or percentages in this case seems
superior to the usage of the SVD.

1.d Experimenting with the Rank
Task. Now try different values of k (at least r = 2 and
r = 8) and repeat the analysis (for NMF only). How do the
results change? Can you name a single best rank?

We will first compare the top-10 terms produced by the
NMF for rank r ∈ {2, 4, 8} and afterwards compare the re-
constructed matrix of those.

We already analyzed the top-10 terms in Section 1.a and
found that the NMF captures the covered topics very well
and that almost all terms in the top-10 are representative
for the whole topic.

With rank r = 2 this distinction between topics based on
terms is not that obvious anymore. First of all, there are
only two topics left - both containing mixed words. god and
christian are in the same bucket as studi and effect. Run-
ning the NMF multiple times also leads to different weights,
which indicates that the optimization gets stuck in a local
optimum that depends on the initial starting point. Overall,
the results for r = 2 are useless, because we can not draw
any conclusions from the resulting topics.

For rank r = 8 we get more useful results than with r = 2.
Every bucket in itself makes sense and can be associated with
a topic without difficulties. It seems that the topics that are
found by NMF are subtopics in the topics that we detected

2



for r = 4. As an example we may use the two buckets that
can be associated with church. The eighth bucket contains
words like homosexu, sin, law and christian, while the sixth
one refers to bib, church, cathol and truth. To us it looks
like the first set of words refers to sins and the law of god,
while the second one is a more general collection about the
church and believing itself. We can extend this observation
to the other topics like medicine and cryptology.

Overall, we get useful results for r = 4 and r = 8. Hence,
it depends on the context which of those two should be pre-
ferred. The results for r = 2 are too broad and, due to the
problem with local optima, unreliable.

Figure 4 and 5 show different runs of the rank-2 NMF. In
contrast to the original matrix in Figure 1, we see that in
each case two of the four vertical quartiles look alike.

Figure 4: Rank-2 NMF reconstruction 1

Figure 5: Rank-2 NMF reconstruction 2

The basic structure of the original matrix is not retained
and, again, the rank-2 NMF produces a bad result.

We visualize the matrix reconstruction for rank r = 8 in
Figure 6.

Figure 6: Rank-8 NMF reconstruction

Compared to the rank-4 approximation from Figure 2 the
rank-8 approximation makes only minor improvements. It is

hard to identify obvious differences between the two matrices
when compared side-by-side.

In general, we see that the rank-2 NMF produces unreliable
results that do not provide much value, because some topics
are connected, although they are from different categories.
The rank-8 NMF improves the factorization slightly and can
produce useful results if someone wants to split the existing
topics even further. In our opinion, the rank-8 results are
to fine-granular. Thus, we conclude that the rank-4 NMF
produces the best results and recommend to use a rank that
is similar to the number of topics, if known beforehand.

1.e Gaussian NMF
Task. Apply Gaussian NMF (i.e., using Euclidean norm).
Do the results change? In your opinion, which NMF variant
produces better results, if any? Argue!

In this section we will compare the results from the pre-
vious sections, which were obtained using the Generalized
Kullback-Leibler (GKL) as a cost measure for the difference
between the original matrix and the factorization, with the
results obtained by using the Eucledian norm as a cost mea-
sure.

The top-10 terms with their weights seem to be similar to
the rank-4 GKL NMF and can be interpreted as in Sec-
tion 1.a, but if we look at the weights that are assigned to
each word, we can observe a difference. Interpreting the val-
ues as the confidence that a term belongs into this section,
we can conclude that the Gaussian NMF is more confident in
its term allocation than the GKL NMF, although the results
are similar.

We get a similar picture in regard to the reconstruction. The
resulting matrix is shown in Figure 7.

Figure 7: Gaussian NMF reconstruction

The overall structure and the most prominent shapes are
similar to the ones in Figure 2. Only the values in the Gaus-
sian NMF are slightly lower. There are less bright spots and
the overall visualization seems more dim. Comparing it to
the original matrix, the values seem closer together since
both are not very bright in most spots.

Since both cost models try to minimize the distance between
the original matrix and the factorization, it is expected that
the results are close. In our opinion it does not make a
difference which variant is chosen.

2. PLSA
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Task. Run NMF with KL divergence and r = 4 and factor
the resulting decomposition using each of the two functions
nmf.lsr and nmf.slr. Study the result. Which information is
contained in each of the three matrices? What can you say
about the sum of the entries in each matrix? Can you give
a probabilistic interpretation of the result (i.e., each entry
(i,j) of each matrix)?

2.a nmf.lsr
nmf.lsr produces an m × r matrix L′, an r × r diagonal
matrix Σ′, and an r×n matrix R′ such that L̃R̃ = L′Σ′R′,
and the columns of L′ as well as the rows of R′ sum to one.

The matrix Σ′ is a 4 × 4 diagonal matrix that sums to ap-
proximately one in our case. All values on the main diago-
nal are approximately 0.25. This corresponds to the fraction
that each topic contributes to the number of overall topics.
Hence, we can interpret Σ′ as the frequency of the topic.

All rows in R′ sum to one and can be interpreted as a prob-
ability vector. As each row represents one topic and each
column a word, we say that the entry (i, j) defines the prob-
ability that word j appears for topic i. This indicates that
some words are more likely to appear in a topic than others,
which matches our presumptions.

Now we can apply the same logic to the left matrix L′. In
this case, the columns, representing the topics, sum to one
and the rows correspond to documents. We can interpret
this as the influence that a document has on a topic. Docu-
ments that have a low value in the left matrix in a column
contribute little to the topic, while documents with a high
value contribute more and have greater influence.

2.b nmf.slr
nmf.slr produces an m × m diagonal matrix Σ′′, an m ×
r matrix L′′, and an r × n matrix R′′ such that L̃R̃ =
Σ′′L′′R′′, and the rows of L′′ as well as the rows of R′′ sum
to one.

L′′ is a 400 × 4 matrix and its rows sum to one. Again we
interpret them as a probability. Taking as a example the
second row (0.8660983, 0.1332566, 6.426188e-4, 2.530776e-
6), we say that document 2 has a probability of 13% to
be in topic 2 and a probability of 87% to be in topic 4. All
other probabilities are very small and negligible. Entry (i, j)
in matrix L′′ represents the probability that document i is
part of topic j.

Matrix R′′ is exactly the same as matrix R′ in Section 2.a.
The interpretation is the same.

Now, only Σ′′ is left to be interpreted. It is a 400× 400 di-
agonal matrix that sums to one. In the previous subsection
we interpret the diagonal matrix as the relative frequency of
a topic. With regards to the documents it makes more sense
to take the values in matrix Σ′′ as relative contributions of
each document. This means that a document with a high
value in the diagonal matrix is relevant for the reconstruc-
tion, while a low value indicates insignificance.

To verify that those values are truly insignificant, we set
all values in the first quartile of Σ′′ to 0 and compute the

approximated reconstruction. Using the Frobenius norm as
a measure for the distance between two matrices, we see
that both reconstructions are close to the original matrix
and that the documents with small values in Σ′′ have little
influence.

3. CLUSTERING
Task. The documents in the data came from four news-
groups. Your task is to cluster the documents in such a
way that the clusters correspond to the newsgroups (which
we can think of as topics). To evaluate the quality of the
clustering, we treat cluster identifiers as predicted labels
and consider the accuracy (fraction of correctly predicted
labels) and the confusion matrix. Cluster the normalized
newsgroup data into four clusters using each of the meth-
ods below and study the results. Also look at the clusters
manually. Which clustering(s) perform well, which do not?
Why?

3.a k-Means
Applying k-Means to the matrix with k = 4 results in a
overall accuracy of 26%. That means that 1 in 4 predictions
is correct. Looking at the confusion matrix in Figure 8 we
can directly see, why this is the case.

4 1 2 3
4 100 98 99 99
1 0 2 0 0
2 0 0 1 0
3 0 0 0 1

Figure 8: k-Means confusion matrix

Almost all documents are in the cluster 4, while all other
clusters consists mainly of one or two documents.

It is likely that this is due to the high dimensionality that
is inherent to the data set. Although documents may seem
close together based on the points the distance between them
in the high dimensional room is huge. This is known as the
curse of dimensionality and in particular ”distance concen-
tration, which denotes the tendency of distances between all
pairs of points in high-dimensional data to become almost
equal” [1, p.1].

As all distances are big and nearly equal, the most efficient
way for k-Means is to put 3 of the 4 centroids onto three
documents and assigning all other documents to a single
centroid, which is, in this case, topic 4.

3.b k-Means on U4Σ4

Using the first two factor matrices of the rank-4 truncated
SVD reduces the dimensionality of the input matrix from
400 × 800 to 400 × 4 and shrinks the space substantially.
This leads to a slightly improved accuracy of 27.75% and
the confusion matrix in Figure 9.
Now, there are two cluster centroids which have multiple
documents in their cluster, but the overall result is still a
bad clustering. One of the problems may be that all values
in the resulting matrix are very small (≈1e-4). This means
that all distances are approximately the same and the error
is small for every possible cluster setup.
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3 4 2 1
3 99 89 97 97
4 0 11 2 3
2 0 0 1 0
1 1 0 0 0

Figure 9: k-Means confusion matrix from rank-4 truncated
SVD

3.c k-Means on the L̃ matrix of the NMF
The left matrix L̃ of the factorization has the same dimen-
sions as our factorization in Section 3.b. The magnitude of
the included values is also similar. It likely faces the same
issues.

With an accuracy of 26.75% we again have a minor improve-
ment over the plain k-Means model from Section 3.a.

4 1 2 3
4 100 97 97 99
1 0 3 0 0
2 0 0 3 0
3 0 0 0 1

Figure 10: k-Means confusion matrix from L̃ matrix of the
NMF

One major difference that we can infer from the confusion
matrix is that there are no mispredictions except for cluster
4. This indicates that the documents belonging to a topic
are closer together than with the previous two models. Nev-
ertheless, the issue observed in Section 3.b persists.

3.d k-Means on the L′ matrix of factorization
L′Σ′R′

The result for the L′ matrix is similar to the result we ob-
tained from the L̃ of the NMF in Section 3.c. We have an
accuracy of 26.75% and obtain the confusion matrix shown
in Figure 11.

4 1 2 3
4 100 97 97 99
1 0 3 0 0
2 0 0 3 0
3 0 0 0 1

Figure 11: k-Means confusion matrix from L′ matrix of fac-
torization L′Σ′R′

Again, there are no mispredictions, but more documents are
falsely assigned to cluster 4. We can interpret the confusion
matrix similar to the one in Section 3.c.

3.e k-Means on the L′′ matrix of factorization
Σ′′L′′R′′

Compared to all previous matrices the matrix L′′ has the
additional property that the rows sum to one and represent
the probability that a document belongs to a specific class.
In Section 2.b we saw for the second row and for multiple
other rows that the NMF is very confident in its assignment
which means that one document usually gets a value close

to one, while all others are approximately zero. Following
this line of argument we would expect the classification to
be much better, because we are now able to distinguish the
documents much better.

This expectation is confirmed by an accuracy of 95.5% and
the confusion matrix in Figure 12.

1 4 3 2
1 95 0 1 0
4 2 98 0 2
3 2 1 98 7
2 1 1 1 91

Figure 12: k-Means confusion matrix from L′′ matrix of
factorization Σ′′L′′R′′

All in all, we conclude that the different representations of
the NMF lead to improvements in different aspects. The
L′Σ′R′ makes it easy to remove insignificant documents,
the Σ′′L′′R′′ factorization allows for an effective clustering
of the documents into topics and, ultimately, L̃R̃ helps us
to grasp the underlying topics from the most representative
terms in a topic.
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