
Data Mining and Matrices (FSS18)
Assignment 2: Matrix Completion

Steffen Schmitz
University of Mannheim

stefschm@mail.uni-mannheim.de

1. COMPUTING THE LOSS FUNCTION
In this assignment, we will make use of the following loss
function:

L(L,R) =
∑

(i,j)∈Ω

(dij − [LR]ij)
2 +

λ

2
(∥L∥2F + ∥R∥2F ) (1)

=
∑

(i,j)∈Ω

[
(dij − lTi rj)

2 +
λ∥li∥22
2Ni

+
λ∥rj∥22
2Nj

]
(2)

=
∑

(i,j)∈Ω

[(
dij −

r∑
k=1

likrkj

)2

+
λ
∑r

k=1 l
2
ik

2Ni
+

λ
∑r

k=1 r
2
kj

2Nj

]
(3)

This loss function computes the squared error in reconstruct-
ing the revealed entries in D, plus an L2 regularization term.

1.a Prove the Equality
Task. Prove that the above equalities hold.

In order to prove the equalities of Equation 1, 2 and 3 hold,
we split them into two parts. First, we show that the local
loss,

∑
(i,j)∈Ω(dij−[LR]ij)

2, is equivalent to the first part of
the second and third equation and afterwards we will show
that the reformulations of the L2 regularization, λ

2
(∥L∥2F +

∥R∥2F ) are equivalent.

For the local loss we need to show that

(dij − [LR]ij)
2 = (dij − lTi rj)

2 =

(
dij −

r∑
k=1

likrkj

)2

for any (i, j) ∈ Ω. If this equality holds for an arbitrary pair
of revealed entries it holds for the complete sum. By taking
the square root, subtracting dij and multiplying it by −1 we
get the following statement

[LR]ij = lTi rj =

r∑
k=1

likrkj

which is exactly the result of a multiplication for entry (i, j)
as defined in the lecture.

Second, the equalities for the L2 regularization must hold.
They are shown in Equation 4 and 5.

λ

2
(∥L∥2F + ∥R∥2F ) =

∑
(i,j)∈Ω

(
λ∥li∥22
2Ni

+
λ∥rj∥22
2Nj

)
(4)

λ

2
(∥L∥2F + ∥R∥2F ) =

∑
(i,j)∈Ω

(
λ
∑r

k=1 l
2
ik

2Ni
+

λ
∑r

k=1 r
2
kj

2Nj

)
(5)

λ
2
is a constant in all terms and, therefore, we can cancel it

out. Splitting the equations into L and R related terms, we
obtain

∥L∥2F =
1

Ni

∑
(i,j)∈Ω

∥li∥22 =
1

Ni

∑
(i,j)∈Ω

r∑
k=1

l2ik

and

∥R∥2F =
1

Nj

∑
(i,j)∈Ω

∥rj∥22 =
1

Nj

∑
(i,j)∈Ω

r∑
k=1

r2kj

The Frobenius norm, defined as ∥A∥F =
√∑m

i=1

∑n
j=1 a

2
ij ,

is the same as the two outer terms in both equations, tak-
ing the square into account. 1

Ni/j
serves as a normalization

constant that is only required, because we are looking at a
subset of the rows and columns of L and R, respectively.

Now the only equality left to show is that

∥L∥2F =
1

Ni

∑
(i,j)∈Ω

∥li∥22

and

∥R∥2F =
1

Nj

∑
(i,j)∈Ω

∥rj∥22

As in the exercise for matrix completion, we can use the fact
that ∥A∥2F =

∑
i ∥ai∥22. Treating 1

Ni/j
as a normalization

constant again we can see that this equality, too, holds.

We, therefore, have shown that Equation 1, 2 and 3 are
equivalent.

2. COMPUTING THE LOCAL GRADIENTS
2.a Gradient per Entry
Task. Set

Lij(li, rj) = (dij − lTi rj)
2 +

λ∥li∥22
2Ni

+
λ∥rj∥22
2Nj

=

(
dij −

r∑
k=1

likrkj

)2

+
λ
∑r

k=1 l
2
ik

2Ni
+

λ
∑r

k=1 r
2
kj

2Nj

1



as in (2) and (3). Compute the gradients w.r.t. to each entry
in the factor matrices, i.e., compute

∇likLij(li, rj),

∇rkjLij(li, rj).

First, we compute the gradient with regards to lik which we
can write as

∇likLij(li, rj) = ∇lik

(
dij −

r∑
k=1

likrkj

)2

+∇lik

λ
∑r

k=1 l
2
ik

2Ni

+∇lik

λ
∑r

k=1 r
2
kj

2Nj

using the sum-rule. The last term does not depend on lik,
can, therefore, be treated as a constant, and becomes 0 in the
derivative. In the second summand we can factor out λ

2Ni

and are left with ∇lik

∑r
k=1 l

2
ik which is equal to 2·

∑r
k=1 lik.

This leaves us with

∇likLij(li, rj) = ∇lik

(
dij −

r∑
k=1

likrkj

)2

+
λ

Ni

r∑
k=1

lik

Finally, we apply the chain rule and get

∇likLij(li, rj) = −2 · (dij −
r∑

k=1

likrkj) · (
r∑

k=1

rkj)+
λ

Ni

r∑
k=1

lik

Similarly we get as the result for ∇rkjLij(li, rj)

∇rkjLij(li, rj) = −2 ·(
r∑

k=1

lik) ·(dij −
r∑

k=1

likrkj)+
λ

Nj

r∑
k=1

rkj

2.b Gradient per Row/Column
Task. Compute the gradients w.r.t. to each row/column in
the factor matrices, i.e., compute

∇lTi
Lij(li, rj),

∇rTj
Lij(li, rj).

For this subtask we can reuse the results from Section 2.a
and replace the sums over k values with a vectorized compu-
tation. This results in the following equation for∇lTi

Lij(li, rj)

∇lTi
Lij(li, rj) = −2 · (dij − lTi rj) · rTj +

λ

Ni
lTi

and for ∇rTj
Lij(li, rj)

∇rTj
Lij(li, rj) = −2 · lTi · (dij − lTi rj) +

λ

Nj
rTj

3. IMPLEMENTING GRADIENT DESCENT
Task. Complete the function gdepoch. Once this function is
implemented, you are ready to factorize the provided image.
The default choice of parameters in the R script is r = 10
and λ = 2. Run gradient descent by executing the com-
mands provided in the R script. Visualize the result after 5,
15, and 50 epochs and discuss.

The goal of our implementation is to compute an estimation
of the full matrix, based on the revealed entries. In contrast
to the Singular Value Decomposition, we only take revealed
entries into account and ignore missing values completely.

We try to minimize the loss function from Section 1 by the
application of Gradient Descent. Therefore, we compute
the gradient at a random point and walk downhill towards a
minimum. After each step (epoch) we are closer to the min-
imum and our approximation of the matrix should become
better. The first approximation after 5 epochs is shown in
Figure 1. We can only see a few grey dots on a black back-

Figure 1: Matrix factorization after 5 epochs

ground without the possibility to identify any shapes in the
picture. At this point we are still far away from the best
factorization and observe a high error between the original
matrix D and the rank r factorization LR.

Figure 2 visualizes the factorization after 15 epochs of gradi-
ent descent. It includes shapes that are clearly distinguish-

Figure 2: Matrix factorization after 15 epochs

able and, with having in mind, that the original image shows
three persons with sunglasses and a label at the bottom we
can make out the basic shapes of all of these. The factor-
ization after 15 epochs is much better than after 5. It re-
constructs the basic structure of the image without showing
any details.

2



Finally, we look at the factorization after running 50 epochs
of gradient descent. The image in Figure 3 clearly resembles

Figure 3: Matrix factorization after 50 epochs

the original image with unrevealed entries. We can clearly
identify three persons and the ”Matrix” text in the bottom
left. The difference between the original image with unre-
vealed entries and the factorization LR seems very small.

Yet, there still is a lot of noise in the image. Running gra-
dient descent for image completion is a suboptimal method,
because it does not take the relation between neighbouring
pixels into account. Another factor is that we only compute
a rank r approximation instead of a perfect factorization.

Looking at the computed error in each epoch we can see
that it sharply falls in the beginning, but the improvement
continues to decline with each epoch. Approaching the min-
imum, it becomes harder to optimize the image even further
without increasing the loss elsewhere.

All in all, we draw the conclusion that the gradient descent
approach produces a good factorization for the sparse matrix
D.

4. IMPLEMENTING STOCHASTIC GRADI-
ENT DESCENT

Task. Factorize the matrix again, this time using stochastic
gradient descent (as before, set r = 10 and λ = 2). Compare
the result with the result obtained by gradient descent and
discuss.

The resulting factorization LR for matrix D is shown in Fig-
ure 4. As in Figure 3, we see three persons with sunglasses
and the ”Matrix” label in the bottom left of the image. Both
images look very similar, which means that both methods
found the same minimum of the error function.

From the error per epoch in the notebook we also derive that
they start with the same error and finish of at a similar error
that is around 415. The errors of corresponding epochs are
closely together.

This result is expected, because the stochastic gradient de-
scent should approximate converge to the same optimum as

Figure 4: Matrix factorization with Stochastic Gradient De-
scent

the gradient descent, especially when the Loss function is
convex.

5. IMPACT OF PARAMETER CHOICES
Task. Factorize the input matrix with the following choice
of parameters (using either gradient descent or stochastic
gradient descent):

• r = 10, λ = 2 (mildly regularized),

• r = 10, λ = 0 (unregularized),

• r = 10, λ = 20 (heavily regularized),

• r = 1, λ = 0 (lower rank),

• r = 20, λ = 2 (higher rank).

Compare the resulting completed matrices visually. What
is the effect of the various parameters? Discuss.

For this section we compute all results with stochastic gra-
dient descent.

The first parameter combination we look at are the param-
eters that we have used across all previous sections. It uses
rank r = 10 and λ = 2, which means that the factorization is
mildly regularized. This again means that we apply a small
penalty if the magnitude of the matrices L and R becomes
large. The result in Figure 5 demonstrates, as expected, a
similar image to the ones in the previous chapters.

In Figure 6 we remove the regularization and only minimize
the error between the original matrix and our factorization.
In the picture we observe brighter spots than before and
a greater variation of colors. Especially the more promi-
nent features of the left two faces, like the noses and the
cheekbones have a color closer to white than in the mildly
regularized image.

As the regularization imposes a penalty on large values this
is expected. The absence of this regularisation allows the

3



Figure 5: Mildly regularized matrix factorization

Figure 6: Unregularized matrix factorization

factorization to minimize the error even further by increas-
ing the values in some spots. This is a common consequence
of overfitting the dataset and one of the reasons why regu-
larization is applied [1, cf. p.227].

The next parameter combination applies a heavy penalty
for large matrix norms of L and R. The resulting image is
displayed in Figure 7. We are able to single out the basic

Figure 7: Heavily regularized matrix factorization

outlines of the three characters in the image, but, overall,
very little gets revealed. Instead of overfitting the image like
in Figure 6, we underfit it, which means that the penalty on
the matrices is so high that they are not flexible enough to
capture the essence of the original matrix D.

The last two parameter combinations focus on the rank of
the matrix instead of the regularization parameter λ. A
low rank corresponds to a rather simple matrix, because all
rows and columns have to be linear combinations of another,
while a high rank allows the matrix to be more complex.

The matrix factorization for rank 1 is visualized in Figure
8. The shapes look similar to the gradient descent result
after 15 epochs from Figure 2. We can also observe that

Figure 8: Lower rank matrix factorization

the image consists exclusively of straight lines without any
clearly distinguishable pixels. This is the case, because every

4



row and column is a linear combination and, thus, it is not
possible to create any shapes, except through intersections
of weighted lines.

On the opposite side, we have the high rank factorization in
Figure 9, which captures many details. The image looks sim-

Figure 9: Higher rank matrix factorization

ilar to the mildly regularized image in Figure 5, but makes
some minor improvements around the ”Matrix” label on the
bottom left. With the additional complexity that is allowed
through the higher rank it improves on some structures, but
is still similar to the rank 10 image.

All in all, the choice of the parameters r = 10 and λ = 2
seems the most reasonable, as the resulting image contains
all important structures and, at the same time, is not very
complex.

6. REFERENCES
[1] K. P. Murphy. Machine Learning: A Probabilistic

Perspective. The MIT Press, 2012.

5


	Computing the Loss Function
	Prove the Equality

	Computing the Local Gradients
	Gradient per Entry
	Gradient per Row/Column

	Implementing Gradient Descent
	Implementing Stochastic Gradient Descent
	Impact of Parameter Choices
	References

