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1. INTUITION ON SVD

1.a Manual Estimation
Task. Try to manually obtain the rank of each of the follow-
ing matrices, as well as its singular values, and the left and
right singular vectors corresponding to the non-zero singular
values. Do this by ”looking” at the data and try to infer how
the (compact) SVD needs to look like.

We start the exercise by determining the rank of each matrix
and try to guess the SVD afterwards. The row or column
rank of a matrix is the maximum number of linearly inde-
pendent rows or columns, respectively. Except for matrix
M2, all matrices are symmetric (Mn = MT

n ), which means
that the row and column rank are equal to each other.

The rows and columns of M2 are similar and are all linear
combinations of each other. We determine that the rank of
M2 is 1.

For the first matrix M1 we learn that all rows and columns
are linear combinations of the first one (either by multipli-
cation with 1 or 0). Therefore, we conclude that the rank r
of M1 is 1.

We can make the same argument for matrix M3. Its rank r
is 1, too.

M4 is the first matrix where we can’t compute all rows and
columns as a linear combination of another one. The first
three rows and columns and the last two rows and columns
are linear combinations of each other. The rank r of M4 is
2. We estimate the rank r of M6 to be also 2 for the same
reason.

The remaining matrix M5 should have a rank r or 3, be-
cause the first two rows and the last two rows are linearly
dependent and the third row is independent of all the others.

The singular value decomposition of a matrix A with n rows
and m columns is

A = UΣVT

where the superscript T indicates the transpose of matrix
V [1, p. 49]. We obtain the compact SVD by truncating U
and VT to r columns and rows, respectively. Σ will be a
diagonal r x r matrix.

For the first three matrices with rank r = 1, we expect Σ to
be only a scalar value and the singular vectors U and V to
have the shape 5 x 1.

As already said, we expect the rank r of M4 to be 2. This
means that we have a 2 x 2 matrix for the diagonal matrix
Σ and 5 x 2 singular vectors for the compact SVD.

For an overview of estimated compact SVDs have a look
at the Jupyter Notebook that was handed in together with
this document. Usually, the singular vectors would have
orthogonal unit vectors as their rows and columns, but, un-
fortunately, I was unable to estimate those correctly.

1.b Actual SVD
Task. Compute the SVD (e.g., using R’s svd function) and
compare. Have you been correct?

Again, the computed SVDs are included in the correspond-
ing Jupyter Notebook. In general, the assumptions made
in Section 1.a seem to hold. The first three matrices have
a rank of 1 and the values the estimated values also seem
related to the actual, computed values. As already men-
tioned, we haven’t normalized the vectors, which explains
the deviation.

The same observation holds for matrix M4 which has a rank
of 2 and 2 non-zero singular values.

For the matrix M5 we see the first deviation between ex-
pected and actual results. We estimated the rank of M5 to
be equal to 3, which would correspond to 3 non-zero singular
values.

Σ5 =


3.56 0 0 0 0
0 2 0 0 0
0 0 0.56 0 0
0 0 0 3 · 10−17 0
0 0 0 0 0

 (1)

In Equation 1 we can see that R computes 4 non-zero singu-
lar values, which shows that the actual rank of matrix M5 is
4. Nevertheless, we can argue that 3·10−17 effectively is zero
and has little to no influence on the result if we reconstruct
the matrix. Our approximation from 1.a is, therefore, also
reasonable for M5.

Last but not least, we estimated a rank of 2 for matrix M6.
The singular values again indicate a higher rank, 5 in this
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case, but all singular values after the second are very close
to zero (σi>2 < 1 ·10−15). If we apply the same argument as
for matrix M5 we conclude, that a rank of 2 is also sufficient
to approximate M6 almost perfectly.

The estimated compact SVD for matrix M5 and M6 are
also reasonable, if we ignore normalization.

1.c Rank-1 Approximation
Task. How does the best rank-1 approximation look like?
Is it ”intuitive”?

According to the Eckart-Young-Theorem, the best rank-
k approximation of a matrix is given by the rank-k truncated
SVD. Therefore, we can compute the best rank-1 approxi-
mation by multiplying the first column of U with the first
singular value and the first row of VT .

We do not take the matrices M1, M2 and M3 into account,
because their rank already is 1 and the best rank-1 approx-
imation is the matrix itself.

For matrix M4 we observe that the upper left part is recon-
structed perfectly, while the four entries in the lower right
corner stay at zero. Following our estimation from Section
1.a this is also intuitive. We can observe two sets of linear
dependent rows in the original matrix and reconstruct only
one of them perfectly with the rank-1 approximation.

The result is less obvious for the matrices M5 and M6. We
observe that the approximation is unable to reconstruct the
basic shape of matrix M5. We would expect the four entries
in the top right and bottom left of the matrix to be closer to
0, while all other values in the matrix approximate 1, but,
all values that are apart from the middle row and column
are the same. It seems that the SVD emphasizes that the
middle row and column are also all 1s.

The approximation of matrix M6 seems much better. The
lowest value is assigned to the entry in the middle of the
matrix which corresponds to the only 0 value in the origi-
nal matrix. Values on the middle row and column are still
smaller than 1 and diverge from the other approximated en-
tries, but the structure of matrix M6 can be derived from
the approximation.

1.d SVD Approximation in R
Task. How many non-zero singular values does M6 have,
i.e., what is the rank of M6? How many non-zero singular
values are reported by R? Discuss!

Computing the SVD in WolframAlpha1 provides us with
two non-zero singular values d ≈ (4.83, 0.83, 0, 0, 0) for the
decomposition of M6, which fits to the rank of 2 for the
matrix, that we computed with R’s rankMetrix function.

With R’s svd function we obtain d ≈ (4.83, 0.83, 2.42·10−16, 3·
10−18, 2.13 · 10−50) as the singular values which effectively
corresponds to a rank of 5.

1http://www.wolframalpha.com

At this point we can apply the same argument as in Section
1.a, namely, that all singular values after the second are
effectively zero and it is likely that they are caused by issues
in the float representation in R.

This assumptions is confirmed by computing the rank-2 ap-
proximation of matrix M6, which effectively returns the
original matrix (again, taking float representation issues into
account).

2. THE SVD ON WEATHER DATA
2.a Computing z-scores
Task. Normalize the data to z-scores. Considering the data
we are using, are the assumptions for normalizing the data
reasonable?

We normalize the data using R’s scale function that takes
a matrix, normalizes and centers it. First, it computes the
mean of each column and subtracts it from each element and
afterwards divides them by the column mean.

This transforms a distribution with any mean and any stan-
dard deviation to the normal distribution N (0, 1). The z-
score transformation implicitly assumes that the data fol-
lows a standard distribution, which means that we need
to confirm that each column’s distribution follows approxi-
mately a bell shape.

From the plots in the corresponding Jupyter Notebook we
learn that this is the case and the application of z-scores on
the climate set is reasonable.

2.c Interpreting the SVD
Task. Plot each of the first 5 columns of U. Use the longi-
tude and latitude of each data point as the x and y coordi-
nates, respectively, and the corresponding entry in the left
singular vector to color each point. Can you interpret the
result?

Figure 1 shows the plot for the first column of U. We can

Figure 1: Plot for first column of U

see that the continental regions in the South and the West
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are red, while the North, Iceland and the region around the
Alps are green. The colors are the strongest in the South
and in the North and blurred in the middle. Comparing this
chart to typical climate landscapes of Europe, we conclude
that the red zones correspond to overall warmer regions and
the green zones to overall colder regions in Europe.

The second column is displayed in Figure 2. We can see that

Figure 2: Plot for second column of U

the West Coast and the region around the Alps are greenish,
while the continental regions are more likely to be red.

If we compare it with the monthly precipitation in Europe
in the month of April (Figure 32) we can see that there is
a strong correlation between those charts. Hence, the green

Figure 3: Monthly precipitation in Europe in April

zones in Figure 2 correspond to regions with more rain, while
the red zones show drier regions. We still have to keep in

2http://www.mappedplanet.com/karten/klima/april nied-
eu.png

mind that Figure 2 contains data for the whole year, while
Figure 3 displays only a single month.

Nevertheless, we can assume that the second column indi-
cates whether a specific regions experiences more precipita-
tion or less.

For the third column of the left singular values displayed in
Figure 4 we get large red areas in regions that are close or
adjacent to the sea. In this interpretation red regions are

Figure 4: Plot for third column of U

closer to the sea, while green regions are further away.

The fourth column of the matrix U is depicted in Figure 5.
We can see that Spain, the Alps and large parts of Greece
have the deepest green, while Great Britain and the north-
ern part of central Europe is mostly red. Knowing that the

Figure 5: Plot for fourth column of U

Alps are around the middle of the map and there are mul-
tiple mountains in Spain and Greece, the coloring in Figure
5 can be compared to the relief map in Europe shown in
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Figure 63. From the comparison we infer that green regions

Figure 6: Relief map of Europe

correspond to elevated regions on the map and red regions
signify proximity to the sea. We know that the weather and
the precipitation in the mountains is different than in other
regions and this seems also relevant for the reconstruction
of our original matrix.

We conclude the analysis with an interpretation of the fifth
column of the left singular vector U. A part of Scotland,

Figure 7: Plot for fifth column of U

Portugal and most parts of Scandinavia and the former Yu-
goslavia are green, while the rest of Europe is mostly colored
red. Unfortunately, we can not think of any similarity that
those regions have and therefore lack an interpretation for
this map.

2.d Interpreting the SVD
3http://www.vidiane.com/map of europe.jpg

Task. Plot some scatterplots between the columns of U
using colors to distinguish either their North-South or East-
West location. Can you interpret the results?

In Section 2.c we estimated that the first column of the left
singular vector indicates the average temperature in each
region and the second indicates the precipitation in each
region. We plot those two columns in Figure 8. On the x-

Figure 8: Compare first and second column of U

axis we see the values for the first column, on the y-axis the
value of the second column, and the color indicates whether
the region is in the North or in the South.

The chart shows that the two groups are clearly separated
with regards to the first column. This fits the behavior we
observed in the previous section, where regions in the South
are warmer than in the North. For the value of the second
column we see that regions with a low values in the first
column of U are closer together with regards to the precip-
itation, while regions with a high value have more variance.

In Figure 9 we analyze the second and the fifth column of
the left singular values. The x-axis shows the precipitation
in Europe and, again, we lack an interpretation for the y-
axis. The colors in Figure 9 indicate the East-West relation
of the regions.

Contrasting this chart with our results from Section 2.c, we
see that most of the rain falls in the East of Europe. This is
also exemplified by the dense, green cluster for small values
of x. We conclude that almost all of Europe’s precipitation
takes place in the East.

2.e Rank Selection
Task. Try the different rank selection methods listed below
to decide what would be a good rank for a truncated SVD.
Report the rank each method suggests (and when subjective
evaluation is needed, say why you picked your choice).

The current rank of our climate matrix is 48 and we want
to find a lower-rank approximation that reconstructs the
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Figure 9: Compare second and fifth column of U

original matrix as good as possible, while reducing noise
and size of the SVD.

2.e.i Guttman-Kaiser Criterion
The Guttman-Kaiser criterion selects all values σi where
σi > 1. Applying this criterion to the singular values of our
climate dataset, we obtain a suggested rank of 37.

2.e.ii 90% of squared Frobenius norm
For the 90% of squared Frobenius norm criterion we select
the singular values in a way that the sum of their squares
exceeds 90% of the sum of the squares of all singular values.
For the climate dataset we only need the first 3 out of the
48 singular values to fulfill this criterion.

A problem with both the Guttman-Kaiser criterion and the
90% of squared Frobenius norm are the arbitrary thresh-
olds. We might as well select only singular values σi > 5 or
expect the truncated SVD to ”explain” 85% of the singular
values. For the reasons stated above, we will not take those
into consideration when choosing the rank that we want to
truncate to.

2.e.iii Scree test
We plot the singular values in decreasing order and look for
a point where the values even out or there is a clear drop
in the magnitude of the values. The plot is shown in Figure
10.

There is a clear drop after the sixth singular value. There-
fore, we select rank k = 6 for the truncation.

2.e.iv Entropy-based method
We compute each singular values contribution to the Frobe-
nius norm and treat those as probabilities. Then we compute
the entropy of the resulting vector and select k, so that the
sum of contributions of the first k singular values is bigger
than the computed entropy.

With this method we obtain a recommendation k = 1.

Figure 10: Scree test for weather data SVD.

2.e.v Random flipping of signs
We try to select k in a manner that the residual matrix con-
tains mostly or almost only noise. Looking at the plotted
result, we find to find a small value of k for which the struc-
ture of the residual matrix is small. A good result with a
small k is around k = 10. For the implementation and the
chart have a look at the attached Jupyter Notebook.

As the overall value of k we pick the result of the Scree test,
which is 6. Following the obvious drop in the magnitude in
the values there is little ambiguity in the Scree test result.
Next, we take the results of the entropy-based method and
the random-flipping into account, if the Scree test result is
complicated to interpret or unambiguous.

2.f RMSE and Noise
Task. Create a noisy version of of your normalized climate
data by adding i.i.d. Gaussian noise from N (0, ϵ2), where ϵ
is a parameter that corresponds to the standard deviation of
the noise. Do this for various choices of ϵ ∈ [0, 2]. Now create
a plot with ϵ on the x-axis and the RMSE on the y-axis. Add
a line for the RMSE between the original data and the noisy
data. For k ∈ 1, 2, 5, 10, add a line for the RMSE between
the rank-k truncated SVD of climate.normal and the rank-k
truncated SVD of climate.noise. Discuss the results.

In Figure 11 we display the RMSE between the original data
and the noisy data for different truncation levels. In this
case, the truncation with k = 48 corresponds to the original
matrix, because its rank is 48.

The figure shows that the error between the truncated orig-
inal matrix and the truncated noisy matrix increases with
the truncation parameter k. The SVD behaves exactly as
expected in this case, because we assumed that a small rank
approximation removes much noise, while keeping the most
important features. If we increase k we also include more
of the modeled noise in our reconstruction which leads to
poorer results with increasing size of k.
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Figure 11: RMSE and Noise.

3. CLUSTERING AND VISUALIZING
3.a kMeans Result
Task. Look at the resulting clustering and explain what the
clusters may represent.

The data is clustered with kMeans into 5 clusters. In a next
step, each region in Europe is colored depending on its clus-
ter so that regions with the same color have similar features
in the original matrix. Figure 12 visualizes the clustering.

Figure 12: kMeans clustering of weather data.

Following that the input of the of the clustering corresponds
to weather data it is likely that the clusters represent differ-
ent climate zones in Europe, where regions with the same
color also have a similar climate. This again correlates with
the observation that the South has the same cluster. Simi-
larly, the continental region and Great Britain share a clus-
ter, whereas Scandinavia and the East each have a different
cluster.

If we compare this to a climate map in Europe it is obvi-
ous that the green cluster resembles mediterranean climate,
while the blue cluster is oceanic and the red correlates with
a warm continental climate. This confirms our assumption.

3.b kMeans and SVD
Task. For another visualization of the results, plot the data
so that the x-axis position comes from the first left singular
vector, the y-axis position comes from the second left sin-
gular vector, and the color of each point is defined by the
cluster identifier. Are the clusters well-separated from each
other in the plot or are they mixed? Do some of the clusters
look like outliers?

The resulting plot is shown in Figure 13. The diagram

Figure 13: SVD analysis with kMeans clustering.

demonstrates that the red, blue and green cluster may also
be summarized as a single big cluster, as there is no clear
separation between the three. Comparing this with Figure
12, we notice that the grouping of the clusters resembles
the structure of Europe as one big continental region, which
confirms the thought that they can also be one big group.

The other two groups, the black and the blue, are more
clearly separated.

Outliers can most probably be found in the black cluster.
All values with x > 0.05 seem like another cluster that is
different from the actual one. As a result it may be necessary
to increase the number of clusters k to get better results.

3.c Principal Component Analysis
Task. Compute the PCA scores of the data points for the
first k principal components for k ∈ 1, 2, 3, thereby reducing
dimensionality to k. Do this using the SVD of the appropri-
ate version of the climate data. Repeat the clustering and
visualization steps of a) with this new data. Did the results
change? Why do you think the results changed or did not
change?
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After computing the PCA for our normalized climate dataset,
we plot it the same way as in Section 3.b. This results in a
similar plot, where the main regions of clusters correspond
to each other, yet, there are some differences between the
two plots.

One major difference is that the parts of the South, which
are close to the mediterranean sea, now share a cluster with
England and that the region that was previously only in the
East expands into much of continental Europe. The Alps
also get their own cluster in the PCA clustering.

Actually, I would expect the two charts to be similar, be-
cause the only additional assumption that the PCA makes
is that the data is centered, what was done in Section 2.a.
From there it is possible to compute the PCA from the SVD
results.

4. REFERENCES
[1] D. Skillicorn. Understanding Complex Datasets: Data

Mining with Matrix Decompositions. Chapman &
Hall/CRC Data Mining and Knowledge Discovery
Series. CRC Press, 2007.

7


	Intuition on SVD
	Manual Estimation
	Actual SVD
	Rank-1 Approximation
	SVD Approximation in R

	The SVD on Weather Data
	Computing z-scores
	Interpreting the SVD
	Interpreting the SVD
	Rank Selection
	Guttman-Kaiser Criterion
	90% of squared Frobenius norm
	Scree test
	Entropy-based method
	Random flipping of signs

	RMSE and Noise

	Clustering and Visualizing
	kMeans Result
	kMeans and SVD
	Principal Component Analysis

	References

