Data Mining and Matrices (FSS18) Assignment 1: Singular Value Decomposition

Steffen Schmitz
University of Mannheim
stefschm@mail.uni-mannheim.de

1. INTUITION ON SVD

1.a Manual Estimation

Task. Try to manually obtain the rank of each of the following matrices, as well as its singular values, and the left and right singular vectors corresponding to the non-zero singular values. Do this by "looking" at the data and try to infer how the (compact) SVD needs to look like.

We start the exercise by determining the rank of each matrix and try to guess the SVD afterwards. The row or column rank of a matrix is the maximum number of linearly independent rows or columns, respectively. Except for matrix \mathbf{M}_2 , all matrices are symmetric $(\mathbf{M}_n = \mathbf{M}_n^T)$, which means that the row and column rank are equal to each other.

The rows and columns of M_2 are similar and are all linear combinations of each other. We determine that the rank of M_2 is 1.

For the first matrix \mathbf{M}_1 we learn that all rows and columns are linear combinations of the first one (either by multiplication with 1 or 0). Therefore, we conclude that the rank r of \mathbf{M}_1 is 1.

We can make the same argument for matrix M_3 . Its rank r is 1, too.

 \mathbf{M}_4 is the first matrix where we can't compute all rows and columns as a linear combination of another one. The first three rows and columns and the last two rows and columns are linear combinations of each other. The rank r of \mathbf{M}_4 is 2. We estimate the rank r of \mathbf{M}_6 to be also 2 for the same reason.

The remaining matrix \mathbf{M}_5 should have a rank r or 3, because the first two rows and the last two rows are linearly dependent and the third row is independent of all the others.

The singular value decomposition of a matrix $\mathbf A$ with n rows and m columns is

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

where the superscript T indicates the transpose of matrix \mathbf{V} [1, p. 49]. We obtain the compact SVD by truncating \mathbf{U} and \mathbf{V}^T to r columns and rows, respectively. Σ will be a diagonal $r \ge r$ matrix.

For the first three matrices with rank r=1, we expect Σ to be only a scalar value and the singular vectors \mathbf{U} and \mathbf{V} to have the shape 5 x 1.

As already said, we expect the rank r of \mathbf{M}_4 to be 2. This means that we have a 2 x 2 matrix for the diagonal matrix Σ and 5 x 2 singular vectors for the compact SVD.

For an overview of estimated compact SVDs have a look at the Jupyter Notebook that was handed in together with this document. Usually, the singular vectors would have orthogonal unit vectors as their rows and columns, but, unfortunately, I was unable to estimate those correctly.

1.b Actual SVD

Task. Compute the SVD (e.g., using R's svd function) and compare. Have you been correct?

Again, the computed SVDs are included in the corresponding Jupyter Notebook. In general, the assumptions made in Section 1.a seem to hold. The first three matrices have a rank of 1 and the values the estimated values also seem related to the actual, computed values. As already mentioned, we haven't normalized the vectors, which explains the deviation.

The same observation holds for matrix M_4 which has a rank of 2 and 2 non-zero singular values.

For the matrix \mathbf{M}_5 we see the first deviation between expected and actual results. We estimated the rank of \mathbf{M}_5 to be equal to 3, which would correspond to 3 non-zero singular values.

$$\Sigma_5 = \begin{pmatrix} 3.56 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0.56 & 0 & 0 \\ 0 & 0 & 0 & 3 \cdot 10^{-17} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \tag{1}$$

In Equation 1 we can see that R computes 4 non-zero singular values, which shows that the actual rank of matrix \mathbf{M}_5 is 4. Nevertheless, we can argue that $3\cdot 10^{-17}$ effectively is zero and has little to no influence on the result if we reconstruct the matrix. Our approximation from 1.a is, therefore, also reasonable for \mathbf{M}_5 .

Last but not least, we estimated a rank of 2 for matrix \mathbf{M}_6 . The singular values again indicate a higher rank, 5 in this

case, but all singular values after the second are very close to zero $(\sigma_{i>2} < 1 \cdot 10^{-15})$. If we apply the same argument as for matrix \mathbf{M}_5 we conclude, that a rank of 2 is also sufficient to approximate \mathbf{M}_6 almost perfectly.

The estimated compact SVD for matrix M_5 and M_6 are also reasonable, if we ignore normalization.

1.c Rank-1 Approximation

Task. How does the best rank-1 approximation look like? Is it "intuitive"?

According to the ECKART-YOUNG-THEOREM, the best rank-k approximation of a matrix is given by the rank-k truncated SVD. Therefore, we can compute the best rank-1 approximation by multiplying the first column of \mathbf{U} with the first singular value and the first row of \mathbf{V}^T .

We do not take the matrices M_1 , M_2 and M_3 into account, because their rank already is 1 and the best rank-1 approximation is the matrix itself.

For matrix \mathbf{M}_4 we observe that the upper left part is reconstructed perfectly, while the four entries in the lower right corner stay at zero. Following our estimation from Section 1.a this is also intuitive. We can observe two sets of linear dependent rows in the original matrix and reconstruct only one of them perfectly with the rank-1 approximation.

The result is less obvious for the matrices \mathbf{M}_5 and \mathbf{M}_6 . We observe that the approximation is unable to reconstruct the basic shape of matrix \mathbf{M}_5 . We would expect the four entries in the top right and bottom left of the matrix to be closer to 0, while all other values in the matrix approximate 1, but, all values that are apart from the middle row and column are the same. It seems that the SVD emphasizes that the middle row and column are also all 1s.

The approximation of matrix \mathbf{M}_6 seems much better. The lowest value is assigned to the entry in the middle of the matrix which corresponds to the only 0 value in the original matrix. Values on the middle row and column are still smaller than 1 and diverge from the other approximated entries, but the structure of matrix \mathbf{M}_6 can be derived from the approximation.

1.d SVD Approximation in R

Task. How many non-zero singular values does M_6 have, i.e., what is the rank of M_6 ? How many non-zero singular values are reported by R? Discuss!

Computing the SVD in WolframAlpha¹ provides us with two non-zero singular values $d \approx (4.83, 0.83, 0, 0, 0)$ for the decomposition of \mathbf{M}_6 , which fits to the rank of 2 for the matrix, that we computed with R's rankMetrix function.

With R's svd function we obtain $d \approx (4.83, 0.83, 2.42 \cdot 10^{-16}, 3 \cdot 10^{-18}, 2.13 \cdot 10^{-50})$ as the singular values which effectively corresponds to a rank of 5.

At this point we can apply the same argument as in Section 1.a, namely, that all singular values after the second are effectively zero and it is likely that they are caused by issues in the float representation in R.

This assumptions is confirmed by computing the rank-2 approximation of matrix \mathbf{M}_6 , which effectively returns the original matrix (again, taking float representation issues into account).

2. THE SVD ON WEATHER DATA

2.a Computing z-scores

Task. Normalize the data to z-scores. Considering the data we are using, are the assumptions for normalizing the data reasonable?

We normalize the data using R's scale function that takes a matrix, normalizes and centers it. First, it computes the mean of each column and subtracts it from each element and afterwards divides them by the column mean.

This transforms a distribution with any mean and any standard deviation to the normal distribution $\mathcal{N}(0,1)$. The z-score transformation implicitly assumes that the data follows a standard distribution, which means that we need to confirm that each column's distribution follows approximately a bell shape.

From the plots in the corresponding Jupyter Notebook we learn that this is the case and the application of z-scores on the climate set is reasonable.

2.c Interpreting the SVD

Task. Plot each of the first 5 columns of U. Use the longitude and latitude of each data point as the x and y coordinates, respectively, and the corresponding entry in the left singular vector to color each point. Can you interpret the result?

Figure 1 shows the plot for the first column of U. We can

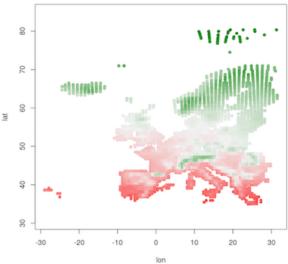


Figure 1: Plot for first column of U

see that the continental regions in the South and the West

¹http://www.wolframalpha.com

are red, while the North, Iceland and the region around the Alps are green. The colors are the strongest in the South and in the North and blurred in the middle. Comparing this chart to typical climate landscapes of Europe, we conclude that the red zones correspond to overall warmer regions and the green zones to overall colder regions in Europe.

The second column is displayed in Figure 2. We can see that

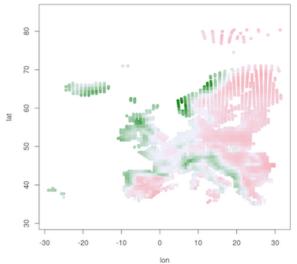


Figure 2: Plot for second column of ${\bf U}$

the West Coast and the region around the Alps are greenish, while the continental regions are more likely to be red.

If we compare it with the monthly precipitation in Europe in the month of April (Figure 3²) we can see that there is a strong correlation between those charts. Hence, the green

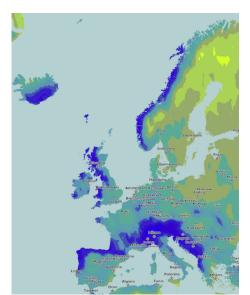


Figure 3: Monthly precipitation in Europe in April

zones in Figure 2 correspond to regions with more rain, while the red zones show drier regions. We still have to keep in

mind that Figure 2 contains data for the whole year, while Figure 3 displays only a single month.

Nevertheless, we can assume that the second column indicates whether a specific regions experiences more precipitation or less.

For the third column of the left singular values displayed in Figure 4 we get large red areas in regions that are close or adjacent to the sea. In this interpretation red regions are

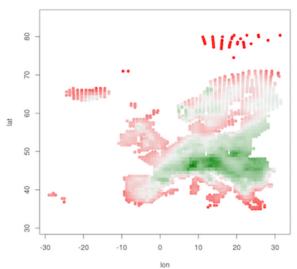


Figure 4: Plot for third column of U

closer to the sea, while green regions are further away.

The fourth column of the matrix **U** is depicted in Figure 5. We can see that Spain, the Alps and large parts of Greece have the deepest green, while Great Britain and the northern part of central Europe is mostly red. Knowing that the

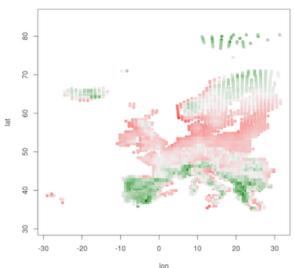


Figure 5: Plot for fourth column of U

Alps are around the middle of the map and there are multiple mountains in Spain and Greece, the coloring in Figure 5 can be compared to the relief map in Europe shown in

 $^{^2 \}rm http://www.mappedplanet.com/karten/klima/april_niedeu.png$

Figure 6^3 . From the comparison we infer that green regions

Figure 6: Relief map of Europe

correspond to elevated regions on the map and red regions signify proximity to the sea. We know that the weather and the precipitation in the mountains is different than in other regions and this seems also relevant for the reconstruction of our original matrix.

We conclude the analysis with an interpretation of the fifth column of the left singular vector **U**. A part of Scotland,

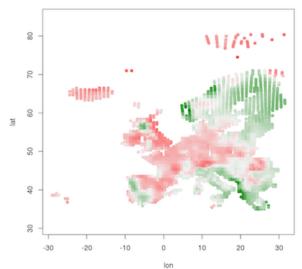


Figure 7: Plot for fifth column of ${\bf U}$

Portugal and most parts of Scandinavia and the former Yugoslavia are green, while the rest of Europe is mostly colored red. Unfortunately, we can not think of any similarity that those regions have and therefore lack an interpretation for this map.

2.d Interpreting the SVD

Task. Plot some scatterplots between the columns of **U** using colors to distinguish either their North-South or East-West location. Can you interpret the results?

In Section 2.c we estimated that the first column of the left singular vector indicates the average temperature in each region and the second indicates the precipitation in each region. We plot those two columns in Figure 8. On the x-

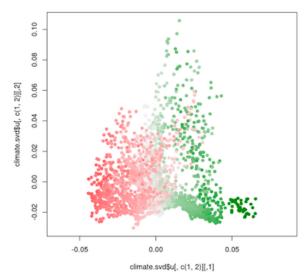


Figure 8: Compare first and second column of U

axis we see the values for the first column, on the y-axis the value of the second column, and the color indicates whether the region is in the North or in the South.

The chart shows that the two groups are clearly separated with regards to the first column. This fits the behavior we observed in the previous section, where regions in the South are warmer than in the North. For the value of the second column we see that regions with a low values in the first column of **U** are closer together with regards to the precipitation, while regions with a high value have more variance.

In Figure 9 we analyze the second and the fifth column of the left singular values. The x-axis shows the precipitation in Europe and, again, we lack an interpretation for the y-axis. The colors in Figure 9 indicate the East-West relation of the regions.

Contrasting this chart with our results from Section 2.c, we see that most of the rain falls in the East of Europe. This is also exemplified by the dense, green cluster for small values of x. We conclude that almost all of Europe's precipitation takes place in the East.

2.e Rank Selection

Task. Try the different rank selection methods listed below to decide what would be a good rank for a truncated SVD. Report the rank each method suggests (and when subjective evaluation is needed, say why you picked your choice).

The current rank of our climate matrix is 48 and we want to find a lower-rank approximation that reconstructs the

³http://www.vidiane.com/map_of_europe.jpg

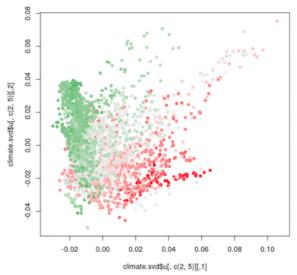


Figure 9: Compare second and fifth column of ${\bf U}$

original matrix as good as possible, while reducing noise and size of the SVD.

2.e.i Guttman-Kaiser Criterion

The Guttman-Kaiser criterion selects all values σ_i where $\sigma_i > 1$. Applying this criterion to the singular values of our climate dataset, we obtain a suggested rank of 37.

2.e.ii 90% of squared Frobenius norm

For the 90% of squared Frobenius norm criterion we select the singular values in a way that the sum of their squares exceeds 90% of the sum of the squares of all singular values. For the climate dataset we only need the first 3 out of the 48 singular values to fulfill this criterion.

A problem with both the Guttman-Kaiser criterion and the 90% of squared Frobenius norm are the arbitrary thresholds. We might as well select only singular values $\sigma_i > 5$ or expect the truncated SVD to "explain" 85% of the singular values. For the reasons stated above, we will not take those into consideration when choosing the rank that we want to truncate to.

2.e.iii Scree test

We plot the singular values in decreasing order and look for a point where the values even out or there is a clear drop in the magnitude of the values. The plot is shown in Figure 10

There is a clear drop after the sixth singular value. Therefore, we select rank k=6 for the truncation.

2.e.iv Entropy-based method

We compute each singular values contribution to the Frobenius norm and treat those as probabilities. Then we compute the entropy of the resulting vector and select k, so that the sum of contributions of the first k singular values is bigger than the computed entropy.

With this method we obtain a recommendation k = 1.

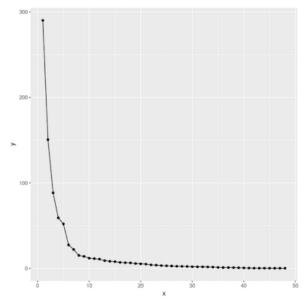


Figure 10: Scree test for weather data SVD.

2.e.v Random flipping of signs

We try to select k in a manner that the residual matrix contains mostly or almost only noise. Looking at the plotted result, we find to find a small value of k for which the structure of the residual matrix is small. A good result with a small k is around k=10. For the implementation and the chart have a look at the attached Jupyter Notebook.

As the overall value of k we pick the result of the Scree test, which is 6. Following the obvious drop in the magnitude in the values there is little ambiguity in the Scree test result. Next, we take the results of the entropy-based method and the random-flipping into account, if the Scree test result is complicated to interpret or unambiguous.

2.f RMSE and Noise

Task. Create a noisy version of of your normalized climate data by adding i.i.d. Gaussian noise from $\mathcal{N}(0,\epsilon^2)$, where ϵ is a parameter that corresponds to the standard deviation of the noise. Do this for various choices of $\epsilon \in [0,2]$. Now create a plot with ϵ on the x-axis and the RMSE on the y-axis. Add a line for the RMSE between the original data and the noisy data. For $k \in \{1,2,5,10\}$, add a line for the RMSE between the rank-k truncated SVD of climate.normal and the rank-k truncated SVD of climate.noise. Discuss the results.

In Figure 11 we display the RMSE between the original data and the noisy data for different truncation levels. In this case, the truncation with k=48 corresponds to the original matrix, because its rank is 48.

The figure shows that the error between the truncated original matrix and the truncated noisy matrix increases with the truncation parameter k. The SVD behaves exactly as expected in this case, because we assumed that a small rank approximation removes much noise, while keeping the most important features. If we increase k we also include more of the modeled noise in our reconstruction which leads to poorer results with increasing size of k.

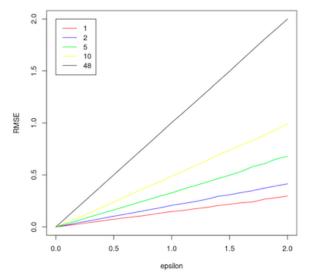


Figure 11: RMSE and Noise.

3. CLUSTERING AND VISUALIZING

3.a kMeans Result

Task. Look at the resulting clustering and explain what the clusters may represent.

The data is clustered with kMeans into 5 clusters. In a next step, each region in Europe is colored depending on its cluster so that regions with the same color have similar features in the original matrix. Figure 12 visualizes the clustering.

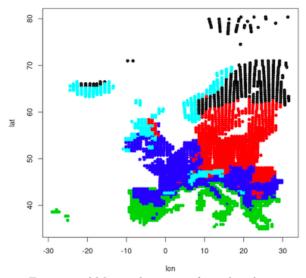


Figure 12: kMeans clustering of weather data.

Following that the input of the of the clustering corresponds to weather data it is likely that the clusters represent different climate zones in Europe, where regions with the same color also have a similar climate. This again correlates with the observation that the South has the same cluster. Similarly, the continental region and Great Britain share a cluster, whereas Scandinavia and the East each have a different cluster.

If we compare this to a climate map in Europe it is obvious that the green cluster resembles mediterranean climate, while the blue cluster is oceanic and the red correlates with a warm continental climate. This confirms our assumption.

3.b kMeans and SVD

Task. For another visualization of the results, plot the data so that the x-axis position comes from the first left singular vector, the y-axis position comes from the second left singular vector, and the color of each point is defined by the cluster identifier. Are the clusters well-separated from each other in the plot or are they mixed? Do some of the clusters look like outliers?

The resulting plot is shown in Figure 13. The diagram

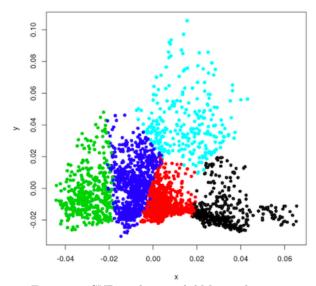


Figure 13: SVD analysis with kMeans clustering.

demonstrates that the red, blue and green cluster may also be summarized as a single big cluster, as there is no clear separation between the three. Comparing this with Figure 12, we notice that the grouping of the clusters resembles the structure of Europe as one big continental region, which confirms the thought that they can also be one big group.

The other two groups, the black and the blue, are more clearly separated.

Outliers can most probably be found in the black cluster. All values with x>0.05 seem like another cluster that is different from the actual one. As a result it may be necessary to increase the number of clusters k to get better results.

3.c Principal Component Analysis

Task. Compute the PCA scores of the data points for the first k principal components for $k \in {1,2,3}$, thereby reducing dimensionality to k. Do this using the SVD of the appropriate version of the climate data. Repeat the clustering and visualization steps of a) with this new data. Did the results change? Why do you think the results changed or did not change?

After computing the PCA for our normalized climate dataset, we plot it the same way as in Section 3.b. This results in a similar plot, where the main regions of clusters correspond to each other, yet, there are some differences between the two plots.

One major difference is that the parts of the South, which are close to the mediterranean sea, now share a cluster with England and that the region that was previously only in the East expands into much of continental Europe. The Alps also get their own cluster in the PCA clustering.

Actually, I would expect the two charts to be similar, because the only additional assumption that the PCA makes is that the data is centered, what was done in Section 2.a. From there it is possible to compute the PCA from the SVD results.

4. REFERENCES

[1] D. Skillicorn. Understanding Complex Datasets: Data Mining with Matrix Decompositions. Chapman & Hall/CRC Data Mining and Knowledge Discovery Series. CRC Press, 2007.