Analysis of Real Estate Bubbles in Eight Residential Markets

Testing for econometric regime shifts and concordance indicators using fundamental based methods

Robert Kuert
Swiss Real Estate Research Congress 29.03.2019
Research focus
Research focus

US housing prices, real

Research questions

- How can we identify a housing price bubble with fundamentals?
- Which (out of eight) countries show such regimes?
Relevance
Systemic Risk

- Housing stores
- Private wealth
- Mortgage debt

Price corrections have impacts on…

- Defaults
- Creditor liquidity
- The wider economy (spill-overs)
Relevance in Switzerland

 [...] has resulted in imbalances on the mortgage and residential real estate markets.

- Mortgage debt at over 1’000 bio. CHF
- Vacancy rates in residential investment properties at high levels

- **Swiss Bankers Association (March 2019)**

 [...] considering [more] amandments to self-regulation
Previous work focused on Error Correction Models

- Review of various econometric papers on housing prices in different countries

- Works of Anundsen (2013) found bubble regime for the US

- Not yet used for other countries

- Error Correction Models & Cointegration
 Assuming that prices adjust to a long term equilibrium with fundamentals
Previous work focused on Error Correction Models

Prices and User cost are cointegrated
Methodology

Approaches
- Price to Rent
- Price to Income

Specifications
- 1. ECM Single Equation
- 2. Cointegration Vector Error Correction

Data
- Eight economies

Bubble indication
- Concordance of indicators
Results for the US

- Concordant bubble regime between 2002 and 2009
Signals in Canada and New Zealand
Japan - a difficult case - and Switzerland
Thesis methodology is more conservative than literature

Indications of a bubble regime

<table>
<thead>
<tr>
<th>Country</th>
<th>Literature</th>
<th>Thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>France</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Switzerland</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

(Independent of period)
Takeaway

- Don’t buy a home in Canada or New Zealand

- Switzerland’s owner occupied sector seems (or seemed) safe

- Data has higher impact than model specifications
 You can not compensate data deficiencies with better model specifications.
Review

- **Prof. Dr. Maximilian von Ehrlich**
 University of Bern

- Research fellow at the Center for Regional Economic Development (CRED)
Panel discussion
Contact information and credits

Author
Robert Kuert
robert.kuert@zkb.ch
Risk Control, Analytics Immobilien
Zürcher Kantonalbank

Supervision
Prof. Dr. Didier Sornette, Dr. Dorsa Sanadgol and Dr. Diego Ardila
Chair of Entrepreneurial Risks
D-MTEC, ETH Zürich
Scheuchzerstrasse 7, Zürich
© ETH Zurich, September 2016
Appendix
A0 Data Description and temporal properties

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Dimension</th>
<th>Deflation</th>
<th>Main Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>Property Price Index</td>
<td>Index</td>
<td>by CPI2</td>
<td>BIS</td>
</tr>
<tr>
<td>Pop</td>
<td>Population</td>
<td>[Total residents]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Real housing rent</td>
<td>Index</td>
<td>by CPI2</td>
<td>OECD</td>
</tr>
<tr>
<td>Y</td>
<td>Per capita disposable income</td>
<td>[national currency/resident]</td>
<td>by CPI2 and Pop</td>
<td>AMECO</td>
</tr>
<tr>
<td>H</td>
<td>Per capita Housing stock</td>
<td>[national currency/resident]</td>
<td>by PJ and Pop</td>
<td>Oxford Economics</td>
</tr>
<tr>
<td>CPI1</td>
<td>CPI Less shelter</td>
<td>Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPI2</td>
<td>CPI All items</td>
<td>Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UC</td>
<td>User Cost</td>
<td>(1-(\tau_y))(1+(\tau_p)) - (\pi + \delta)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **No seasonal adjustment**
- **User cost** is constructed out of the following rates collected per country and if necessary, aggregated: depreciation, property tax, income tax, mortgage interest, and inflation. Deflators are the consumer price index (CPI), once without housing components (CPI1), for deflating PH, R and Y, once measured for all items in order to account for the inflation in the user cost (CPI2).
- Additionally, the value of the housing stock is deflated by an appropriate metric, depending on the measure used for the stock (PJ).
A1 Single Equation Methodology Price-to-Rent

\[\Delta p_{h,t} = \mu + \alpha_{ph} (p_h - \gamma_{r}r - \gamma_{UC}UC)_{t-1} \]

\[+ \sum_{i=1}^{p} \rho_{ph,i} \Delta p_{h,t-i} + \sum_{i=0}^{p} \rho_{r,i} \Delta r_{t-i} + \sum_{i=0}^{p} \rho_{UC,i} \Delta UC_{t-i} + \sum_{l=1}^{3} \lambda_{d,l}d_{l} + \epsilon_{t} \]

H₀: \(\alpha_{ph} = 0 \)
(indicating no cointegration)

Hₐ: \(\alpha_{ph} \neq 0 \)
(indicating cointegration)

whereas \(p_h - \gamma_{r}r - \gamma_{UC}UC \) is called the error correction term. Furthermore, lagged differences with up to \(p \) lags as well as seasonal dummies, \(d_{l} \), are introduced for the quarters \(l = 1, 2, 3 \) while the 4th quarter seasonal effect is captured by \(\mu \). Note that the error correction term accounts for
A2 VECM & CVAR Methodology Price-to-Rent

\[\Delta y_t = \Pi y_{t-1} + \sum_{i=1}^{p-1} \Gamma_i \Delta y_{t-1} + \Phi D_t + \varepsilon_t \]

Here, \(y_t \) is a \(k \times 1 \) vector of the endogenous variables, \(\Phi \) being a \(k \times d \) matrix of coefficients and \(D_t \) is a vector of \(d \) constants, including centered seasonal dummies and the intercept. Since there are several possible deterministic trends, they are included in \(\Pi \). Now \(\Pi y_{t-1} \) is the error correction term and the error is given by \(\varepsilon_t \sim \mathcal{N}(\mu=0, \sigma=\Omega) \), with \(\Omega \) being diagonal. In detail \(\Pi \) and \(\Gamma_i \) are defined as follows.
A3 Log Periodic Power Law Fit (independent of fundamentals)

\[ph_t = A + B(t_c - t)^m + C(t_c - t)^m \cos[\omega \ln(t_c - t) - \phi] \] \[18 \]

where ω is the log frequency and ϕ is a phase constant. Hence the bubble indicator is a detected faster-than-exponential growth of PH_s (in levels) possibly extended by log periodic oscillations\(^\text{10}\).
A4 Concordance Indicator

\[I_K = \frac{1}{T} \left[\sum_{t=1}^{T} S_{x,t} S_{y,t} + \sum_{t=1}^{T} (1 - S_{x,t})(1 - S_{y,t}) \right] \quad \forall K \]

\[i_S = \begin{cases}
1 & \text{Total concordance or } \rho_S = 1 \\
(0,1) & \text{No concordance or } \rho_S = -1 \\
0 & \text{No concordance or } \rho_S = 1
\end{cases} \]

The set \(K \) can either consist of the countries, whereas \(x \) and \(y \) would correspond to the approaches, or \(K \) denotes the approaches and \(x \) and \(y \) are the countries respectively. In this study, both cases are of interest. The concordance indicator \(I_K \) first calculated for all possible combi-
A5 Results Cross-Country Concordance

<table>
<thead>
<tr>
<th></th>
<th>CAN</th>
<th>CH</th>
<th>FRA</th>
<th>GER</th>
<th>JAP</th>
<th>NL</th>
<th>NZ</th>
<th>UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN</td>
<td>1.00</td>
<td>0.36</td>
<td>0.50</td>
<td>0.54</td>
<td>0.68</td>
<td>0.52</td>
<td>0.59</td>
<td>0.41</td>
</tr>
<tr>
<td>CH</td>
<td>0.36</td>
<td>1.00</td>
<td>0.77</td>
<td>0.61</td>
<td>0.54</td>
<td>0.57</td>
<td>0.66</td>
<td>0.71</td>
</tr>
<tr>
<td>FRA</td>
<td>0.50</td>
<td>0.77</td>
<td>1.00</td>
<td>0.62</td>
<td>0.62</td>
<td>0.69</td>
<td>0.76</td>
<td>0.91</td>
</tr>
<tr>
<td>GER</td>
<td>0.54</td>
<td>0.61</td>
<td>0.62</td>
<td>1.00</td>
<td>0.69</td>
<td>0.71</td>
<td>0.80</td>
<td>0.62</td>
</tr>
<tr>
<td>JAP</td>
<td>0.68</td>
<td>0.54</td>
<td>0.62</td>
<td>0.69</td>
<td>1.00</td>
<td>0.55</td>
<td>0.69</td>
<td>0.54</td>
</tr>
<tr>
<td>NL</td>
<td>0.52</td>
<td>0.57</td>
<td>0.69</td>
<td>0.71</td>
<td>0.55</td>
<td>1.00</td>
<td>0.72</td>
<td>0.66</td>
</tr>
<tr>
<td>NZ</td>
<td>0.59</td>
<td>0.66</td>
<td>0.76</td>
<td>0.80</td>
<td>0.69</td>
<td>0.72</td>
<td>1.00</td>
<td>0.75</td>
</tr>
<tr>
<td>UK</td>
<td>0.41</td>
<td>0.71</td>
<td>0.91</td>
<td>0.62</td>
<td>0.54</td>
<td>0.66</td>
<td>0.75</td>
<td>1.00</td>
</tr>
</tbody>
</table>
A6 Results Cross-Model Concordance (only Canada)

Table 14 Concordance matrix for Canada

<table>
<thead>
<tr>
<th></th>
<th>cvar invd noT</th>
<th>cvar invd</th>
<th>cvar ptor noT</th>
<th>cvar ptor</th>
<th>sing ptor</th>
<th>sing invd</th>
<th>LPPLs</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>cvar invd noT</td>
<td>1.00</td>
<td>0.56</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.83</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>cvar invd</td>
<td>0.56</td>
<td>1.00</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.39</td>
<td>0.44</td>
<td>0.33</td>
</tr>
<tr>
<td>cvar ptor noT</td>
<td>1.00</td>
<td>0.56</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.83</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>cvar ptor</td>
<td>1.00</td>
<td>0.56</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.83</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>sing ptor</td>
<td>1.00</td>
<td>0.56</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.83</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>sing invd</td>
<td>0.83</td>
<td>0.39</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>1.00</td>
<td>0.72</td>
<td>0.83</td>
</tr>
<tr>
<td>LPPLs</td>
<td>0.67</td>
<td>0.44</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>0.72</td>
<td>1.00</td>
<td>0.89</td>
</tr>
<tr>
<td>PL</td>
<td>0.67</td>
<td>0.33</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>0.83</td>
<td>0.89</td>
<td>1.00</td>
</tr>
</tbody>
</table>

This table reports the concordance indices (see [21]), a measure of coincidence for bubble cycles, specification wise for the recursive estimations of Canada. CVAR refers to equation [12] for ptor and [15], for invdem, whereas sing represents the single equation specification. [7] and [11] respectively. noT indicates, that no Trend is included in the equation specification. PL represents the power law fit after [18] and LPPLs is log periodic power law fit following [19]. A 0 indicates no synchronization, a 1.00 represents synchronization over the total overlapping sample.