Papers from 15 to 19 September, 2025

Here are the personalized paper recommendations sorted by most relevant
Travel Ranking
👍 👎 ♥ Save
Abstract
This paper introduces CARLA (spatially Constrained Anchor-based Recursive Location Assignment), a recursive algorithm for assigning secondary or any activity locations in activity-based travel models. CARLA minimizes distance deviations while integrating location potentials, ensuring more realistic activity distributions. The algorithm decomposes trip chains into smaller subsegments, using geometric constraints and configurable heuristics to efficiently search the solution space. Compared to a state-of-the-art relaxation-discretization approach, CARLA achieves significantly lower mean deviations, even under limited runtimes. It is robust to real-world data inconsistencies, such as infeasible distances, and can flexibly adapt to various priorities, such as emphasizing location attractiveness or distance accuracy. CARLA's versatility and efficiency make it a valuable tool for improving the spatial accuracy of activity-based travel models and agent-based transport simulations. Our implementation is available at https://github.com/tnoud/carla.
👍 👎 ♥ Save
Dokuz Eylul University
Abstract
Identification of vital nodes contributes to the research of network robustness and vulnerability. The most influential nodes are effective in maximizing the speed and accelerating the information propagation in complex networks. Identifying and ranking the most influential nodes in complex networks has not only theoretical but also practical significance in network analysis since these nodes have a critical influence on the structure and function of complex networks. This paper is devoted to the evaluating the importance of nodes and ranking influential nodes in paths and path-type networks such as comets, double comets, and lollipop networks by network agglomeration based node contraction method.
Travel Personalization
👍 👎 ♥ Save
University of Siegen, Go
Abstract
As global warming soars, the need to assess and reduce the environmental impact of recommender systems is becoming increasingly urgent. Despite this, the recommender systems community hardly understands, addresses, and evaluates the environmental impact of their work. In this study, we examine the environmental impact of recommender systems research by reproducing typical experimental pipelines. Based on our results, we provide guidelines for researchers and practitioners on how to minimize the environmental footprint of their work and implement green recommender systems - recommender systems designed to minimize their energy consumption and carbon footprint. Our analysis covers 79 papers from the 2013 and 2023 ACM RecSys conferences, comparing traditional "good old-fashioned AI" models with modern deep learning models. We designed and reproduced representative experimental pipelines for both years, measuring energy consumption using a hardware energy meter and converting it into CO2 equivalents. Our results show that papers utilizing deep learning models emit approximately 42 times more CO2 equivalents than papers using traditional models. On average, a single deep learning-based paper generates 2,909 kilograms of CO2 equivalents - more than the carbon emissions of a person flying from New York City to Melbourne or the amount of CO2 sequestered by one tree over 260 years. This work underscores the urgent need for the recommender systems and wider machine learning communities to adopt green AI principles, balancing algorithmic advancements and environmental responsibility to build a sustainable future with AI-powered personalization.
AI Insights
  • The authors provide a reproducible pipeline that measures real hardware energy use, not just theoretical FLOPs.
  • A detailed checklist urges authors to disclose energy budgets, CO₂ equivalents, and hardware specs for each experiment.
  • Comparative tables show deep‑learning recommenders emit 42× more CO₂ than classic matrix‑factorization models.
  • The paper argues environmental cost justification should link to tangible societal benefits, encouraging research.
  • It recommends low‑power hardware and algorithmic pruning to shrink the carbon footprint of future systems.
  • By framing sustainability as a research metric, the study invites curiosity about how green AI can coexist with high recommendation accuracy.
Travel Planning
👍 👎 ♥ Save
Paper visualization
Rate this image: 😍 👍 👎
Abstract
Accurate trajectory prediction and motion planning are crucial for autonomous driving systems to navigate safely in complex, interactive environments characterized by multimodal uncertainties. However, current generation-then-evaluation frameworks typically construct multiple plausible trajectory hypotheses but ultimately adopt a single most likely outcome, leading to overconfident decisions and a lack of fallback strategies that are vital for safety in rare but critical scenarios. Moreover, the usual decoupling of prediction and planning modules could result in socially inconsistent or unrealistic joint trajectories, especially in highly interactive traffic. To address these challenges, we propose a contingency-aware diffusion planner (CoPlanner), a unified framework that jointly models multi-agent interactive trajectory generation and contingency-aware motion planning. Specifically, the pivot-conditioned diffusion mechanism anchors trajectory sampling on a validated, shared short-term segment to preserve temporal consistency, while stochastically generating diverse long-horizon branches that capture multimodal motion evolutions. In parallel, we design a contingency-aware multi-scenario scoring strategy that evaluates candidate ego trajectories across multiple plausible long-horizon evolution scenarios, balancing safety, progress, and comfort. This integrated design preserves feasible fallback options and enhances robustness under uncertainty, leading to more realistic interaction-aware planning. Extensive closed-loop experiments on the nuPlan benchmark demonstrate that CoPlanner consistently surpasses state-of-the-art methods on both Val14 and Test14 datasets, achieving significant improvements in safety and comfort under both reactive and non-reactive settings. Code and model will be made publicly available upon acceptance.
Travel Search
👍 👎 ♥ Save
Beijing NormalHong Kong
Abstract
Next location prediction is a key task in human mobility analysis, crucial for applications like smart city resource allocation and personalized navigation services. However, existing methods face two significant challenges: first, they fail to address the dynamic imbalance between periodic and chaotic mobile patterns, leading to inadequate adaptation over sparse trajectories; second, they underutilize contextual cues, such as temporal regularities in arrival times, which persist even in chaotic patterns and offer stronger predictability than spatial forecasts due to reduced search spaces. To tackle these challenges, we propose \textbf{\method}, a \underline{\textbf{C}}h\underline{\textbf{A}}otic \underline{\textbf{N}}eural \underline{\textbf{O}}scillator n\underline{\textbf{E}}twork for next location prediction, which introduces a biologically inspired Chaotic Neural Oscillatory Attention mechanism to inject adaptive variability into traditional attention, enabling balanced representation of evolving mobility behaviors, and employs a Tri-Pair Interaction Encoder along with a Cross Context Attentive Decoder to fuse multimodal ``who-when-where'' contexts in a joint framework for enhanced prediction performance. Extensive experiments on two real-world datasets demonstrate that CANOE consistently and significantly outperforms a sizeable collection of state-of-the-art baselines, yielding 3.17\%-13.11\% improvement over the best-performing baselines across different cases. In particular, CANOE can make robust predictions over mobility trajectories of different mobility chaotic levels. A series of ablation studies also supports our key design choices. Our code is available at: https://github.com/yuqian2003/CANOE.

Interests not found

We did not find any papers that match the below interests. Try other terms also consider if the content exists in arxiv.org.
  • Travel Recommendations
  • Travel
  • Travel Itinerary Creation
  • Travel Industry
You can edit or add more interests any time.

Unsubscribe from these updates