University of Illinois at
Abstract
Agentic systems are modern software systems: they consist of orchestrated modules, expose interfaces, and are deployed in software pipelines. Unlike conventional programs, their execution (i.e., trajectories) is inherently stochastic and adaptive to the problem they are solving. Evaluation of such systems is often outcome-centric, judging their performance based on success or failure at the final step. This narrow focus overlooks detailed insights about such systems, failing to explain how agents reason, plan, act, or change their strategies over time. Inspired by the structured representation of conventional software systems as graphs, we introduce Graphectory to systematically encode the temporal and semantic relations in such software systems. Graphectory facilitates the design of process-centric metrics and analyses to assess the quality of agentic workflows independent of final success.
Using Graphectory, we analyze 4000 trajectories of two dominant agentic programming workflows, namely SWE-agent and OpenHands, with a combination of four backbone Large Language Models (LLMs), attempting to resolve SWE-bench Verified issues. Our fully automated analyses reveal that: (1) agents using richer prompts or stronger LLMs exhibit more complex Graphectory, reflecting deeper exploration, broader context gathering, and more thorough validation before patch submission; (2) agents' problem-solving strategies vary with both problem difficulty and the underlying LLM -- for resolved issues, the strategies often follow coherent localization-patching-validation steps, while unresolved ones exhibit chaotic, repetitive, or backtracking behaviors; (3) even when successful, agentic programming systems often display inefficient processes, leading to unnecessarily prolonged trajectories.
AI Summary - The study also finds a correlation between process-centric metrics and repair status, indicating that agents with higher values in certain metrics are more likely to resolve issues. [3]
- The research questions focus on process-centric metrics, problem-solving strategies, and inefficiency patterns in programming agents. [2]
- The study explores the use of graph-based structures, Graphectory and Langutury, to analyze the behavior of programming agents. [1]
IBM
Abstract
The rapid deployment of large language model (LLM)-based agents introduces a new class of risks, driven by their capacity for autonomous planning, multi-step tool integration, and emergent interactions. It raises some risk factors for existing governance approaches as they remain fragmented: Existing frameworks are either static taxonomies driven; however, they lack an integrated end-to-end pipeline from risk identification to operational assurance, especially for an agentic platform. We propose AGENTSAFE, a practical governance framework for LLM-based agentic systems. The framework operationalises the AI Risk Repository into design, runtime, and audit controls, offering a governance framework for risk identification and assurance. The proposed framework, AGENTSAFE, profiles agentic loops (plan -> act -> observe -> reflect) and toolchains, and maps risks onto structured taxonomies extended with agent-specific vulnerabilities. It introduces safeguards that constrain risky behaviours, escalates high-impact actions to human oversight, and evaluates systems through pre-deployment scenario banks spanning security, privacy, fairness, and systemic safety. During deployment, AGENTSAFE ensures continuous governance through semantic telemetry, dynamic authorization, anomaly detection, and interruptibility mechanisms. Provenance and accountability are reinforced through cryptographic tracing and organizational controls, enabling measurable, auditable assurance across the lifecycle of agentic AI systems. The key contributions of this paper are: (1) a unified governance framework that translates risk taxonomies into actionable design, runtime, and audit controls; (2) an Agent Safety Evaluation methodology that provides measurable pre-deployment assurance; and (3) a set of runtime governance and accountability mechanisms that institutionalise trust in agentic AI ecosystems.
AI Summary - AGENTSAFE is an ethics-grounded governance framework that translates abstract safety principles into concrete, testable, and auditable practices. [2]