Papers from 08 to 12 September, 2025

Here are the personalized paper recommendations sorted by most relevant
Deep Learning for Reinforcement Learning
👍 👎 ♥ Save
Paper visualization
Rate this image: 😍 👍 👎
Abstract
Gradient based optimization is fundamental to most modern deep reinforcement learning algorithms, however, it introduces significant sensitivity to hyperparameters, unstable training dynamics, and high computational costs. We propose TabPFN RL, a novel gradient free deep RL framework that repurposes the meta trained transformer TabPFN as a Q function approximator. Originally developed for tabular classification, TabPFN is a transformer pre trained on millions of synthetic datasets to perform inference on new unseen datasets via in context learning. Given an in context dataset of sample label pairs and new unlabeled data, it predicts the most likely labels in a single forward pass, without gradient updates or task specific fine tuning. We use TabPFN to predict Q values using inference only, thereby eliminating the need for back propagation at both training and inference. To cope with the model's fixed context budget, we design a high reward episode gate that retains only the top 5% of trajectories. Empirical evaluations on the Gymnasium classic control suite demonstrate that TabPFN RL matches or surpasses Deep Q Network on CartPole v1, MountainCar v0, and Acrobot v1, without applying gradient descent or any extensive hyperparameter tuning. We discuss the theoretical aspects of how bootstrapped targets and non stationary visitation distributions violate the independence assumptions encoded in TabPFN's prior, yet the model retains a surprising generalization capacity. We further formalize the intrinsic context size limit of in context RL algorithms and propose principled truncation strategies that enable continual learning when the context is full. Our results establish prior fitted networks such as TabPFN as a viable foundation for fast and computationally efficient RL, opening new directions for gradient free RL with large pre trained transformers.
👍 👎 ♥ Save
Abstract
Classical reinforcement learning (RL) methods often struggle in complex, high-dimensional environments because of their extensive parameter requirements and challenges posed by stochastic, non-deterministic settings. This study introduces quantum deep reinforcement learning (QDRL) to train humanoid agents efficiently. While previous quantum RL models focused on smaller environments, such as wheeled robots and robotic arms, our work pioneers the application of QDRL to humanoid robotics, specifically in environments with substantial observation and action spaces, such as MuJoCo's Humanoid-v4 and Walker2d-v4. Using parameterized quantum circuits, we explored a hybrid quantum-classical setup to directly navigate high-dimensional state spaces, bypassing traditional mapping and planning. By integrating quantum computing with deep RL, we aim to develop models that can efficiently learn complex navigation tasks in humanoid robots. We evaluated the performance of the Soft Actor-Critic (SAC) in classical RL against its quantum implementation. The results show that the quantum SAC achieves an 8% higher average return (246.40) than the classical SAC (228.36) after 92% fewer steps, highlighting the accelerated learning potential of quantum computing in RL tasks.
Agentic RL
👍 👎 ♥ Save
EnvX TeamShanghai JiaoT
Abstract
The widespread availability of open-source repositories has led to a vast collection of reusable software components, yet their utilization remains manual, error-prone, and disconnected. Developers must navigate documentation, understand APIs, and write integration code, creating significant barriers to efficient software reuse. To address this, we present EnvX, a framework that leverages Agentic AI to agentize GitHub repositories, transforming them into intelligent, autonomous agents capable of natural language interaction and inter-agent collaboration. Unlike existing approaches that treat repositories as static code resources, EnvX reimagines them as active agents through a three-phase process: (1) TODO-guided environment initialization, which sets up the necessary dependencies, data, and validation datasets; (2) human-aligned agentic automation, allowing repository-specific agents to autonomously perform real-world tasks; and (3) Agent-to-Agent (A2A) protocol, enabling multiple agents to collaborate. By combining large language model capabilities with structured tool integration, EnvX automates not just code generation, but the entire process of understanding, initializing, and operationalizing repository functionality. We evaluate EnvX on the GitTaskBench benchmark, using 18 repositories across domains such as image processing, speech recognition, document analysis, and video manipulation. Our results show that EnvX achieves a 74.07% execution completion rate and 51.85% task pass rate, outperforming existing frameworks. Case studies further demonstrate EnvX's ability to enable multi-repository collaboration via the A2A protocol. This work marks a shift from treating repositories as passive code resources to intelligent, interactive agents, fostering greater accessibility and collaboration within the open-source ecosystem.
👍 👎 ♥ Save
Shanghai University of F
Abstract
With the rapid advancement of large language models (LLMs), Multi-agent Systems (MAS) have achieved significant progress in various application scenarios. However, substantial challenges remain in designing versatile, robust, and efficient platforms for agent deployment. To address these limitations, we propose \textbf{LightAgent}, a lightweight yet powerful agentic framework, effectively resolving the trade-off between flexibility and simplicity found in existing frameworks. LightAgent integrates core functionalities such as Memory (mem0), Tools, and Tree of Thought (ToT), while maintaining an extremely lightweight structure. As a fully open-source solution, it seamlessly integrates with mainstream chat platforms, enabling developers to easily build self-learning agents. We have released LightAgent at \href{https://github.com/wxai-space/LightAgent}{https://github.com/wxai-space/LightAgent}
AI Insights
  • LightAgent’s swarm design lets dozens of agents coordinate via one LightSwarm instance, boosting throughput.
  • Each agent carries a distinct instruction set, enabling domain‑specific roles such as code synthesis or data retrieval.
  • A built‑in text UI turns user prompts into executable code snippets, streamlining rapid prototyping.
  • Tree‑of‑Thought logic lets agents iteratively refine plans, cutting hallucinations and improving accuracy.
  • The lightweight core keeps memory usage under 200 MB on a single GPU while still supporting custom tool plugins.
  • Advanced features can be daunting for beginners, and highly specialized tasks may still need manual tuning.
  • LightAgent has been applied to robotics, finance, and healthcare, proving its versatility beyond chat‑bot demos.
Reinforcement Learning
👍 👎 ♥ Save
University of Pennsylvann
Abstract
Replication of experimental results has been a challenge faced by many scientific disciplines, including the field of machine learning. Recent work on the theory of machine learning has formalized replicability as the demand that an algorithm produce identical outcomes when executed twice on different samples from the same distribution. Provably replicable algorithms are especially interesting for reinforcement learning (RL), where algorithms are known to be unstable in practice. While replicable algorithms exist for tabular RL settings, extending these guarantees to more practical function approximation settings has remained an open problem. In this work, we make progress by developing replicable methods for linear function approximation in RL. We first introduce two efficient algorithms for replicable random design regression and uncentered covariance estimation, each of independent interest. We then leverage these tools to provide the first provably efficient replicable RL algorithms for linear Markov decision processes in both the generative model and episodic settings. Finally, we evaluate our algorithms experimentally and show how they can inspire more consistent neural policies.
👍 👎 ♥ Save
Purdue University
Abstract
Existing reinforcement learning (RL) methods struggle with complex dynamical systems that demand interactions at high frequencies or irregular time intervals. Continuous-time RL (CTRL) has emerged as a promising alternative by replacing discrete-time Bellman recursion with differential value functions defined as viscosity solutions of the Hamilton--Jacobi--Bellman (HJB) equation. While CTRL has shown promise, its applications have been largely limited to the single-agent domain. This limitation stems from two key challenges: (i) conventional solution methods for HJB equations suffer from the curse of dimensionality (CoD), making them intractable in high-dimensional systems; and (ii) even with HJB-based learning approaches, accurately approximating centralized value functions in multi-agent settings remains difficult, which in turn destabilizes policy training. In this paper, we propose a CT-MARL framework that uses physics-informed neural networks (PINNs) to approximate HJB-based value functions at scale. To ensure the value is consistent with its differential structure, we align value learning with value-gradient learning by introducing a Value Gradient Iteration (VGI) module that iteratively refines value gradients along trajectories. This improves gradient fidelity, in turn yielding more accurate values and stronger policy learning. We evaluate our method using continuous-time variants of standard benchmarks, including multi-agent particle environment (MPE) and multi-agent MuJoCo. Our results demonstrate that our approach consistently outperforms existing continuous-time RL baselines and scales to complex multi-agent dynamics.
Unsubscribe from these updates