Hi j34nc4rl0+product_management,

Here is our personalized paper recommendations for you sorted by most relevant
Product Management
Paper visualization
Abstract
Recent advances in mathematical reasoning and the long-term planning capabilities of large language models (LLMs) have precipitated the development of agents, which are being increasingly leveraged in business operations processes. Decision models to optimize inventory levels are one of the core elements of operations management. However, the capabilities of the LLM agent in making inventory decisions in uncertain contexts, as well as the decision-making biases (e.g. framing effect, etc.) of the agent, remain largely unexplored. This prompts concerns regarding the capacity of LLM agents to effectively address real-world problems, as well as the potential implications of biases that may be present. To address this gap, we introduce AIM-Bench, a novel benchmark designed to assess the decision-making behaviour of LLM agents in uncertain supply chain management scenarios through a diverse series of inventory replenishment experiments. Our results reveal that different LLMs typically exhibit varying degrees of decision bias that are similar to those observed in human beings. In addition, we explored strategies to mitigate the pull-to-centre effect and the bullwhip effect, namely cognitive reflection and implementation of information sharing. These findings underscore the need for careful consideration of the potential biases in deploying LLMs in Inventory decision-making scenarios. We hope that these insights will pave the way for mitigating human decision bias and developing human-centred decision support systems for supply chains.
Abstract
In this paper, we present a novel model architecture for optimizing personalized product search ranking using a multi-task learning (MTL) framework. Our approach uniquely integrates tabular and non-tabular data, leveraging a pre-trained TinyBERT model for semantic embeddings and a novel sampling technique to capture diverse customer behaviors. We evaluate our model against several baselines, including XGBoost, TabNet, FT-Transformer, DCN-V2, and MMoE, focusing on their ability to handle mixed data types and optimize personalized ranking. Additionally, we propose a scalable relevance labeling mechanism based on click-through rates, click positions, and semantic similarity, offering an alternative to traditional human-annotated labels. Experimental results show that combining non-tabular data with advanced embedding techniques in multi-task learning paradigm significantly enhances model performance. Ablation studies further underscore the benefits of incorporating relevance labels, fine-tuning TinyBERT layers, and TinyBERT query-product embedding interactions. These results demonstrate the effectiveness of our approach in achieving improved personalized product search ranking.
AI for Product Management
Abstract
The quick growth of shops using artificial intelligence (AI) techniques has changed digital marketing activities and changed how businesses interact and reach their consumers. (AI) techniques are reshaping digital interactions between shops and consumers interact digitally by providing a more efficient and customized experience, fostering deeper engagement and more informed decision-making. This study investigates how (AI) techniques affect consumer interaction and decision-making over purchases with shops that use digital marketing. The partial least squares method was used to evaluate data from a survey with 300 respondents. When consumer engagement mediates this relationship, artificial intelligence (AI) techniques have a more favorable impact on purchasing decision-making. Consequently, decision-making is positively impacted through consumer engagement. The findings emphasize that for a bigger impact of the (AI) techniques on decision-making, the consumer must initially interact with the (AI) techniques. This research unveils a contemporary pathway in the field of AI-supported shop engagements and illustrates the distinct impact of (AI) techniques on consumer satisfaction, trust, and loyalty, revolutionizing traditional models of customer-purchase decision-making and shop engagement processes. This study provides previously unheard-of insight, into the revolutionary potential of (AI) techniques in influencing customer behavior and shop relationships
Abstract
AI agentic programming is an emerging paradigm in which large language models (LLMs) autonomously plan, execute, and interact with external tools like compilers, debuggers, and version control systems to iteratively perform complex software development tasks. Unlike conventional code generation tools, agentic systems are capable of decomposing high-level goals, coordinating multi-step processes, and adapting their behavior based on intermediate feedback. These capabilities are transforming the software development practice. As this emerging field evolves rapidly, there is a need to define its scope, consolidate its technical foundations, and identify open research challenges. This survey provides a comprehensive and timely review of AI agentic programming. We introduce a taxonomy of agent behaviors and system architectures, and examine core techniques including planning, memory and context management, tool integration, and execution monitoring. We also analyze existing benchmarks and evaluation methodologies used to assess coding agent performance. Our study identifies several key challenges, including limitations in handling long context, a lack of persistent memory across tasks, and concerns around safety, alignment with user intent, and collaboration with human developers. We discuss emerging opportunities to improve the reliability, adaptability, and transparency of agentic systems. By synthesizing recent advances and outlining future directions, this survey aims to provide a foundation for research and development in building the next generation of intelligent and trustworthy AI coding agents.
Vision Setting for Tech Teams
Abstract
Future autonomous systems promise significant societal benefits, yet their deployment raises concerns about safety and trustworthiness. A key concern is assuring the reliability of robot perception, as perception seeds safe decision-making. Failures in perception are often due to complex yet common environmental factors and can lead to accidents that erode public trust. To address this concern, we introduce the SET (Self, Environment, and Target) Perceptual Factors Framework. We designed the framework to systematically analyze how factors such as weather, occlusion, or sensor limitations negatively impact perception. To achieve this, the framework employs SET State Trees to categorize where such factors originate and SET Factor Trees to model how these sources and factors impact perceptual tasks like object detection or pose estimation. Next, we develop Perceptual Factor Models using both trees to quantify the uncertainty for a given task. Our framework aims to promote rigorous safety assurances and cultivate greater public understanding and trust in autonomous systems by offering a transparent and standardized method for identifying, modeling, and communicating perceptual risks.
Abstract
Visual reasoning is critical for a wide range of computer vision tasks that go beyond surface-level object detection and classification. Despite notable advances in relational, symbolic, temporal, causal, and commonsense reasoning, existing surveys often address these directions in isolation, lacking a unified analysis and comparison across reasoning types, methodologies, and evaluation protocols. This survey aims to address this gap by categorizing visual reasoning into five major types (relational, symbolic, temporal, causal, and commonsense) and systematically examining their implementation through architectures such as graph-based models, memory networks, attention mechanisms, and neuro-symbolic systems. We review evaluation protocols designed to assess functional correctness, structural consistency, and causal validity, and critically analyze their limitations in terms of generalizability, reproducibility, and explanatory power. Beyond evaluation, we identify key open challenges in visual reasoning, including scalability to complex scenes, deeper integration of symbolic and neural paradigms, the lack of comprehensive benchmark datasets, and reasoning under weak supervision. Finally, we outline a forward-looking research agenda for next-generation vision systems, emphasizing that bridging perception and reasoning is essential for building transparent, trustworthy, and cross-domain adaptive AI systems, particularly in critical domains such as autonomous driving and medical diagnostics.
Product Strategy
Paper visualization
Abstract
Classification algorithms based on Artificial Intelligence (AI) are nowadays applied in high-stakes decisions in finance, healthcare, criminal justice, or education. Individuals can strategically adapt to the information gathered about classifiers, which in turn may require algorithms to be re-trained. Which collective dynamics will result from users' adaptation and algorithms' retraining? We apply evolutionary game theory to address this question. Our framework provides a mathematically rigorous way of treating the problem of feedback loops between collectives of users and institutions, allowing to test interventions to mitigate the adverse effects of strategic adaptation. As a case study, we consider institutions deploying algorithms for credit lending. We consider several scenarios, each representing different interaction paradigms. When algorithms are not robust against strategic manipulation, we are able to capture previous challenges discussed in the strategic classification literature, whereby users either pay excessive costs to meet the institutions' expectations (leading to high social costs) or game the algorithm (e.g., provide fake information). From this baseline setting, we test the role of improving gaming detection and providing algorithmic recourse. We show that increased detection capabilities reduce social costs and could lead to users' improvement; when perfect classifiers are not feasible (likely to occur in practice), algorithmic recourse can steer the dynamics towards high users' improvement rates. The speed at which the institutions re-adapt to the user's population plays a role in the final outcome. Finally, we explore a scenario where strict institutions provide actionable recourse to their unsuccessful users and observe cycling dynamics so far unnoticed in the literature.

Interests not found

We did not find any papers that match the below interests. Try other terms also consider if the content exists in arxiv.org.
  • Product Roadmap
You can edit or add more interests any time.

Unsubscribe from these updates