Hi j34nc4rl0+product_management,

Here is our personalized paper recommendations for you sorted by most relevant
Product Roadmap
Paper visualization
Abstract
When introducing a novel product, a seller sets a price and decides how much information to provide to a buyer, who may incur a search cost to discover an outside option. The buyer knows the outside option distribution; the seller knows only its mean and bounds. Seeking "robustness," the seller evaluates strategies based on guaranteed profits, balancing search deterrence against surplus extraction. Providing information can deter search and boost demand but requires offering the buyer a higher payoff via a lower price. Results help explain the variations in information provision among new products and suggest that lower search costs can raise prices and lead to noisier information, potentially harming consumers.
AI for Product Management
Abstract
Online marketplaces will be transformed by autonomous AI agents acting on behalf of consumers. Rather than humans browsing and clicking, vision-language-model (VLM) agents can parse webpages, evaluate products, and transact. This raises a fundamental question: what do AI agents buy, and why? We develop ACES, a sandbox environment that pairs a platform-agnostic VLM agent with a fully programmable mock marketplace to study this question. We first conduct basic rationality checks in the context of simple tasks, and then, by randomizing product positions, prices, ratings, reviews, sponsored tags, and platform endorsements, we obtain causal estimates of how frontier VLMs actually shop. Models show strong but heterogeneous position effects: all favor the top row, yet different models prefer different columns, undermining the assumption of a universal "top" rank. They penalize sponsored tags and reward endorsements. Sensitivities to price, ratings, and reviews are directionally human-like but vary sharply in magnitude across models. Motivated by scenarios where sellers use AI agents to optimize product listings, we show that a seller-side agent that makes minor tweaks to product descriptions, targeting AI buyer preferences, can deliver substantial market-share gains if AI-mediated shopping dominates. We also find that modal product choices can differ across models and, in some cases, demand may concentrate on a few select products, raising competition questions. Together, our results illuminate how AI agents may behave in e-commerce settings and surface concrete seller strategy, platform design, and regulatory questions in an AI-mediated ecosystem.
Abstract
The study addresses the paradigm shift in corporate management, where AI is moving from a decision support tool to an autonomous decision-maker, with some AI systems already appointed to leadership roles in companies. A central problem identified is that the development of AI technologies is far outpacing the creation of adequate legal and ethical guidelines. The research proposes a "reference model" for the development and implementation of autonomous AI systems in corporate management. This model is based on a synthesis of several key components to ensure legitimate and ethical decision-making. The model introduces the concept of "computational law" or "algorithmic law". This involves creating a separate legal framework for AI systems, with rules and regulations translated into a machine-readable, algorithmic format to avoid the ambiguity of natural language. The paper emphasises the need for a "dedicated operational context" for autonomous AI systems, analogous to the "operational design domain" for autonomous vehicles. This means creating a specific, clearly defined environment and set of rules within which the AI can operate safely and effectively. The model advocates for training AI systems on controlled, synthetically generated data to ensure fairness and ethical considerations are embedded from the start. Game theory is also proposed as a method for calculating the optimal strategy for the AI to achieve its goals within these ethical and legal constraints. The provided analysis highlights the importance of explainable AI (XAI) to ensure the transparency and accountability of decisions made by autonomous systems. This is crucial for building trust and for complying with the "right to explanation".
Vision Setting for Tech Teams
Abstract
Visual neuroprostheses are commonly framed as technologies to restore natural sight to people who are blind. In practice, they create a novel mode of perception shaped by sparse, distorted, and unstable input. They resemble early extended reality (XR) headsets more than natural vision, streaming video from a head-mounted camera to a neural "display" with under 1000 pixels, limited field of view, low refresh rates, and nonlinear spatial mappings. No amount of resolution alone will make this experience natural. This paper proposes a reframing: bionic vision as neuroadaptive XR. Rather than replicating natural sight, the goal is to co-adapt brain and device through a bidirectional interface that responds to neural constraints, behavioral goals, and cognitive state. By comparing traditional XR, current implants, and proposed neuroadaptive systems, it introduces a new design space for inclusive, brain-aware computing. It concludes with research provocations spanning encoding, evaluation, learning, and ethics, and invites the XR community to help shape the future of sensory augmentation.
Abstract
Real-time perception on edge platforms faces a core challenge: executing high-resolution object detection under stringent latency constraints on limited computing resources. Canvas-based attention scheduling was proposed in earlier work as a mechanism to reduce the resource demands of perception subsystems. It consolidates areas of interest in an input data frame onto a smaller area, called a canvas frame, that can be processed at the requisite frame rate. This paper extends prior canvas-based attention scheduling literature by (i) allowing for variable-size canvas frames and (ii) employing selectable canvas frame rates that may depart from the original data frame rate. We evaluate our solution by running YOLOv11, as the perception module, on an NVIDIA Jetson Orin Nano to inspect video frames from the Waymo Open Dataset. Our results show that the additional degrees of freedom improve the attainable quality/cost trade-offs, thereby allowing for a consistently higher mean average precision (mAP) and recall with respect to the state of the art.
Product Management
Abstract
Financial models do not merely analyse markets, but actively shape them. This effect, known as performativity, describes how financial theories and the subsequent actions based on them influence market processes, by creating self-fulfilling prophecies. Although discussed in the literature on economic sociology, this deeply rooted phenomenon lacks mathematical formulation in financial markets. Our paper closes this gap by breaking down the canonical separation of diffusion processes between the description of the market environment and the financial model. We do that by embedding the model in the process itself, creating a closed feedback loop, and demonstrate how prices change towards greater conformity to the prevailing financial model used in the market. We further show, with closed-form solutions and machine learning, how a performative market maker can reverse engineer the current dominant strategies in the market and effectively arbitrage them while maintaining competitive quotes and superior P&L.

Interests not found

We did not find any papers that match the below interests. Try other terms also consider if the content exists in arxiv.org.
  • Product Strategy
You can edit or add more interests any time.

Unsubscribe from these updates