Humboldt University
Abstract
Provenance plays a crucial role in scientific workflow execution, for instance by providing data for failure analysis, real-time monitoring, or statistics on resource utilization for right-sizing allocations. The workflows themselves, however, become increasingly complex in terms of involved components. Furthermore, they are executed on distributed cluster infrastructures, which makes the real-time collection, integration, and analysis of provenance data challenging. Existing provenance systems struggle to balance scalability, real-time processing, online provenance analytics, and integration across different components and compute resources. Moreover, most provenance solutions are not workflow-aware; by focusing on arbitrary workloads, they miss opportunities for workflow systems where optimization and analysis can exploit the availability of a workflow specification that dictates, to some degree, task execution orders and provides abstractions for physical tasks at a logical level.
In this paper, we present HyProv, a hybrid provenance management system that combines centralized and federated paradigms to offer scalable, online, and workflow-aware queries over workflow provenance traces. HyProv uses a centralized component for efficient management of the small and stable workflow-specification-specific provenance, and complements this with federated querying over different scalable monitoring and provenance databases for the large-scale execution logs. This enables low-latency access to current execution data. Furthermore, the design supports complex provenance queries, which we exemplify for the workflow system Airflow in combination with the resource manager Kubernetes. Our experiments indicate that HyProv scales to large workflows, answers provenance queries with sub-second latencies, and adds only modest CPU and memory overhead to the cluster.
Presidency University
Abstract
An AI-powered data visualization platform that automates the entire data analysis process, from uploading a dataset to generating an interactive visualization. Advanced machine learning algorithms are employed to clean and preprocess the data, analyse its features, and automatically select appropriate visualizations. The system establishes the process of automating AI-based analysis and visualization from the context of data-driven environments, and eliminates the challenge of time-consuming manual data analysis. The combination of a Python Flask backend to access the dataset, paired with a React frontend, provides a robust platform that automatically interacts with Firebase Cloud Storage for numerous data processing and data analysis solutions and real-time sources. Key contributions include automatic and intelligent data cleaning, with imputation for missing values, and detection of outliers, via analysis of the data set. AI solutions to intelligently select features, using four different algorithms, and intelligent title generation and visualization are determined by the attributes of the dataset. These contributions were evaluated using two separate datasets to assess the platform's performance. In the process evaluation, the initial analysis was performed in real-time on datasets as large as 100000 rows, while the cloud-based demand platform scales to meet requests from multiple users and processes them simultaneously. In conclusion, the cloud-based data visualization application allowed for a significant reduction of manual inputs to the data analysis process while maintaining a high quality, impactful visual outputs, and user experiences