Abstract
Geothermal field development typically involves complex processes that
require multi-disciplinary expertise in each process. Thus, decision-making
often demands the integration of geological, geophysical, reservoir
engineering, and operational data under tight time constraints. We present
Geothermal Analytics and Intelligent Agent, or GAIA, an AI-based system for
automation and assistance in geothermal field development. GAIA consists of
three core components: GAIA Agent, GAIA Chat, and GAIA Digital Twin, or DT,
which together constitute an agentic retrieval-augmented generation (RAG)
workflow. Specifically, GAIA Agent, powered by a pre-trained large language
model (LLM), designs and manages task pipelines by autonomously querying
knowledge bases and orchestrating multi-step analyses. GAIA DT encapsulates
classical and surrogate physics models, which, combined with built-in
domain-specific subroutines and visualization tools, enable predictive modeling
of geothermal systems. Lastly, GAIA Chat serves as a web-based interface for
users, featuring a ChatGPT-like layout with additional functionalities such as
interactive visualizations, parameter controls, and in-context document
retrieval. To ensure GAIA's specialized capability for handling complex
geothermal-related tasks, we curate a benchmark test set comprising various
geothermal-related use cases, and we rigorously and continuously evaluate the
system's performance. We envision GAIA as a pioneering step toward intelligent
geothermal field development, capable of assisting human experts in
decision-making, accelerating project workflows, and ultimately enabling
automation of the development process.