Hi!

Your personalized paper recommendations for 10 to 14 November, 2025.
🎯 Top Personalized Recommendations
Snowflake Inc
Why we think this paper is great for you:
This paper is highly relevant as it explores a production SQL engine that integrates relational operations with semantic reasoning, allowing you to query both structured and unstructured data. It directly addresses advancements in SQL capabilities for diverse data types.
Rate paper: 👍 👎 ♥ Save
Abstract
Snowflake's Cortex AISQL is a production SQL engine that integrates native semantic operations directly into SQL. This integration allows users to write declarative queries that combine relational operations with semantic reasoning, enabling them to query both structured and unstructured data effortlessly. However, making semantic operations efficient at production scale poses fundamental challenges. Semantic operations are more expensive than traditional SQL operations, possess distinct latency and throughput characteristics, and their cost and selectivity are unknown during query compilation. Furthermore, existing query engines are not designed to optimize semantic operations. The AISQL query execution engine addresses these challenges through three novel techniques informed by production deployment data from Snowflake customers. First, AI-aware query optimization treats AI inference cost as a first-class optimization objective, reasoning about large language model (LLM) cost directly during query planning to achieve 2-8$\times$ speedups. Second, adaptive model cascades reduce inference costs by routing most rows through a fast proxy model while escalating uncertain cases to a powerful oracle model, achieving 2-6$\times$ speedups while maintaining 90-95% of oracle model quality. Third, semantic join query rewriting lowers the quadratic time complexity of join operations to linear through reformulation as multi-label classification tasks, achieving 15-70$\times$ speedups with often improved prediction quality. AISQL is deployed in production at Snowflake, where it powers diverse customer workloads across analytics, search, and content understanding.
AI Summary
  • Semantic join query rewriting transforms quadratic-complexity AI_JOIN operations into linear-complexity multi-label classification tasks using AI_CLASSIFY, yielding 15-70x speedups and often improving prediction quality. [3]
  • Cortex AISQL: A production SQL engine that integrates native semantic operations directly into SQL for querying structured and unstructured data. [3]
  • AISQL natively integrates semantic operations into SQL, enabling declarative queries over structured and unstructured data directly within a production data warehouse environment. [2]
  • AI-aware query optimization significantly improves performance (2-8x speedup) by treating LLM inference cost as a first-class objective during query planning, dynamically reordering predicates and optimizing AI operator placement relative to joins. [2]
  • Adaptive model cascades reduce inference costs for AI_FILTER operations by routing most rows through a fast proxy model and escalating only uncertain cases to a powerful oracle, achieving 2-6x speedups with minimal quality degradation (90-95% oracle quality). [2]
  • The Cortex Platform provides a scalable, multi-tenant architecture for AI inference, managing specialized Inference Engines, scheduling requests, and supporting diverse LLM models from various partners. [2]
  • Novel aggregate operators (AI_AGG, AI_SUMMARIZE_AGG) handle large text volumes via a hierarchical aggregation strategy, with a 'short-circuit' optimization for small datasets reducing latency by 86.1%. [2]
  • Production workload analysis revealed that AI operators dominate execution costs and multi-table queries (AI Joins) are prevalent, directly informing the design of AISQL's optimization strategies. [2]
  • AI-aware query optimization: A technique that treats AI inference cost (monetary and computational) as a primary objective during query planning, influencing operator placement and predicate evaluation order. [2]
  • Adaptive model cascades: An optimization strategy for AI_FILTER that employs a fast proxy model for most rows and a powerful oracle model for uncertain cases, using adaptive threshold learning and importance sampling. [2]
Why we think this paper is great for you:
You will find this paper valuable for its focus on translating natural language queries into precise SQL expressions. It directly addresses the crucial need for efficient and accurate interaction with data through SQL.
Rate paper: 👍 👎 ♥ Save
Abstract
This paper introduces an Error Correction through Prompt Tuning for NL-to-SQL, leveraging the latest advancements in generative pre-training-based LLMs and RAG. Our work addresses the crucial need for efficient and accurate translation of natural language queries into SQL expressions in various settings with the growing use of natural language interfaces. We explore the evolution of NLIDBs from early rule-based systems to advanced neural network-driven approaches. Drawing inspiration from the medical diagnostic process, we propose a novel framework integrating an error correction mechanism that diagnoses error types, identifies their causes, provides fixing instructions, and applies these corrections to SQL queries. This approach is further enriched by embedding fine-tuning and RAG, which harnesses external knowledge bases for improved accuracy and transparency. Through comprehensive experiments, we demonstrate that our framework achieves a significant 12 percent accuracy improvement over existing baselines, highlighting its potential to revolutionize data access and handling in contemporary data-driven environments.
Carnegie Mellon University
Why we think this paper is great for you:
This paper introduces a query system designed for precise data extraction and validation, which is highly pertinent to managing and interacting with large datasets. It offers insights into effective data querying and management practices.
Rate paper: 👍 👎 ♥ Save
Abstract
Electronic health record (EHR) data is an essential data source for machine learning for health, but researchers and clinicians face steep barriers in extracting and validating EHR data for modeling. Existing tools incur trade-offs between expressivity and usability and are typically specialized to a single data standard, making it difficult to write temporal queries that are ready for modern model-building pipelines and adaptable to new datasets. This paper introduces TempoQL, a Python-based toolkit designed to lower these barriers. TempoQL provides a simple, human-readable language for temporal queries; support for multiple EHR data standards, including OMOP, MEDS, and others; and an interactive notebook-based query interface with optional large language model (LLM) authoring assistance. Through a performance evaluation and two use cases on different datasets, we demonstrate that TempoQL simplifies the creation of cohorts for machine learning while maintaining precision, speed, and reproducibility.
CUHK
Why we think this paper is great for you:
This paper delves into vector databases and data trading, offering insights into a specialized yet growing area of database technology. It could expand your understanding of diverse database architectures beyond traditional forms.
Rate paper: 👍 👎 ♥ Save
Abstract
Vector data trading is essential for cross-domain learning with vector databases, yet it remains largely unexplored. We study this problem under online learning, where sellers face uncertain retrieval costs and buyers provide stochastic feedback to posted prices. Three main challenges arise: (1) heterogeneous and partial feedback in configuration learning, (2) variable and complex feedback in pricing learning, and (3) inherent coupling between configuration and pricing decisions. We propose a hierarchical bandit framework that jointly optimizes retrieval configurations and pricing. Stage I employs contextual clustering with confidence-based exploration to learn effective configurations with logarithmic regret. Stage II adopts interval-based price selection with local Taylor approximation to estimate buyer responses and achieve sublinear regret. We establish theoretical guarantees with polynomial time complexity and validate the framework on four real-world datasets, demonstrating consistent improvements in cumulative reward and regret reduction compared with existing methods.
UFMG
Why we think this paper is great for you:
This research on AI coding agents is relevant as these systems can influence how database-related code is generated and managed. Understanding their configuration can provide insights into future development practices.
Rate paper: 👍 👎 ♥ Save
Abstract
Agentic code assistants are a new generation of AI systems capable of performing end-to-end software engineering tasks. While these systems promise unprecedented productivity gains, their behavior and effectiveness depend heavily on configuration files that define architectural constraints, coding practices, and tool usage policies. However, little is known about the structure and content of these configuration artifacts. This paper presents an empirical study of the configuration ecosystem of Claude Code, one of the most widely used agentic coding systems. We collected and analyzed 328 configuration files from public Claude Code projects to identify (i) the software engineering concerns and practices they specify and (ii) how these concerns co-occur within individual files. The results highlight the importance of defining a wide range of concerns and practices in agent configuration files, with particular emphasis on specifying the architecture the agent should follow.
Why we think this paper is great for you:
You might find this paper interesting for its approach to automating problem modeling and solving, a process that often involves structuring and querying data. It touches upon the automation of complex data-driven tasks.
Rate paper: 👍 👎 ♥ Save
Abstract
Optimization modeling and solving are fundamental to the application of Operations Research (OR) in real-world decision making, yet the process of translating natural language problem descriptions into formal models and solver code remains highly expertise intensive. While recent advances in large language models (LLMs) have opened new opportunities for automation, the generalization ability and data efficiency of existing LLM-based methods are still limited, asmost require vast amounts of annotated or synthetic data, resulting in high costs and scalability barriers. In this work, we present OR-R1, a data-efficient training framework for automated optimization modeling and solving. OR-R1 first employs supervised fine-tuning (SFT) to help the model acquire the essential reasoning patterns for problem formulation and code generation from limited labeled data. In addition, it improves the capability and consistency through Test-Time Group Relative Policy Optimization (TGRPO). This two-stage design enables OR-R1 to leverage both scarce labeled and abundant unlabeled data for effective learning. Experiments show that OR-R1 achieves state-of-the-art performance with an average solving accuracy of $67.7\%$, using only $1/10$ the synthetic data required by prior methods such as ORLM, exceeding ORLM's solving accuracy by up to $4.2\%$. Remarkably, OR-R1 outperforms ORLM by over $2.4\%$ with just $100$ synthetic samples. Furthermore, TGRPO contributes an additional $3.1\%-6.4\%$ improvement in accuracy, significantly narrowing the gap between single-attempt (Pass@1) and multi-attempt (Pass@8) performance from $13\%$ to $7\%$. Extensive evaluations across diverse real-world benchmarks demonstrate that OR-R1 provides a robust, scalable, and cost-effective solution for automated OR optimization problem modeling and solving, lowering the expertise and data barriers for industrial OR applications.
Los Alamos National Lab
Why we think this paper is great for you:
This paper discusses how AI is transforming information management and research workflows, which broadly connects to the challenges and solutions in handling large volumes of data. It offers a perspective on AI's impact on data organization.
Rate paper: 👍 👎 ♥ Save
Abstract
Artificial intelligence (AI) is reshaping how research is conceived, conducted, and communicated across fields from chemistry to biomedicine. This commentary examines how AI is transforming the research workflow. AI systems now help researchers manage the information deluge, filtering the literature, surfacing cross-disciplinary links for ideas and collaborations, generating hypotheses, and designing and executing experiments. These developments mark a shift from AI as a mere computational tool to AI as an active collaborator in science. Yet this transformation demands thoughtful integration and governance. We argue that at this time AI must augment but not replace human judgment in academic workflows such as peer review, ethical evaluation, and validation of results. This paper calls for the deliberate adoption of AI within the scientific practice through policies that promote transparency, reproducibility, and accountability.
AI Agents
Kamiwaza AI
Rate paper: 👍 👎 ♥ Save
Abstract
Enterprise adoption of agentic AI systems requires reliable evaluation methods that reflect real-world deployment scenarios. Traditional LLM benchmarks suffer from training data contamination and fail to measure agentic capabilities such as multi-step tool use and decision-making under uncertainty. We present the Kamiwaza Agentic Merit Index (KAMI) v0.1, an enterprise-focused benchmark that addresses both contamination resistance and agentic evaluation. Through 170,000 LLM test items processing over 5.5 billion tokens across 35 model configurations, we demonstrate that traditional benchmark rankings poorly predict practical agentic performance. Notably, newer generation models like Llama 4 or Qwen 3 do not always outperform their older generation variants on enterprise-relevant tasks, contradicting traditional benchmark trends. We also present insights on cost-performance tradeoffs, model-specific behavioral patterns, and the impact of reasoning capabilities on token efficiency -- findings critical for enterprises making deployment decisions.
AI and Society
YUX Design
Rate paper: 👍 👎 ♥ Save
Abstract
Frontier LLMs are optimised around high-resource assumptions about language, knowledge, devices, and connectivity. Whilst widely accessible, they often misfit conditions in the Global South. As a result, users must often perform additional work to make these systems usable. We term this alignment debt: the user-side burden that arises when AI systems fail to align with cultural, linguistic, infrastructural, or epistemic contexts. We develop and validate a four-part taxonomy of alignment debt through a survey of 411 AI users in Kenya and Nigeria. Among respondents measurable on this taxonomy (n = 385), prevalence is: Cultural and Linguistic (51.9%), Infrastructural (43.1%), Epistemic (33.8%), and Interaction (14.0%). Country comparisons show a divergence in Infrastructural and Interaction debt, challenging one-size-fits-Africa assumptions. Alignment debt is associated with compensatory labour, but responses vary by debt type: users facing Epistemic challenges verify outputs at significantly higher rates (91.5% vs. 80.8%; p = 0.037), and verification intensity correlates with cumulative debt burden (Spearmans rho = 0.147, p = 0.004). In contrast, Infrastructural and Interaction debts show weak or null associations with verification, indicating that some forms of misalignment cannot be resolved through verification alone. These findings show that fairness must be judged not only by model metrics but also by the burden imposed on users at the margins, compelling context-aware safeguards that alleviate alignment debt in Global South settings. The alignment debt framework provides an empirically grounded way to measure user burden, informing both design practice and emerging African AI governance efforts.
Research Automation with AI
Brown University
Rate paper: 👍 👎 ♥ Save
Paper visualization
Rate image: 👍 👎
Abstract
Scientific Machine Learning (SciML) integrates data-driven inference with physical modeling to solve complex problems in science and engineering. However, the design of SciML architectures, loss formulations, and training strategies remains an expert-driven research process, requiring extensive experimentation and problem-specific insights. Here we introduce AgenticSciML, a collaborative multi-agent system in which over 10 specialized AI agents collaborate to propose, critique, and refine SciML solutions through structured reasoning and iterative evolution. The framework integrates structured debate, retrieval-augmented method memory, and ensemble-guided evolutionary search, enabling the agents to generate and assess new hypotheses about architectures and optimization procedures. Across physics-informed learning and operator learning tasks, the framework discovers solution methods that outperform single-agent and human-designed baselines by up to four orders of magnitude in error reduction. The agents produce novel strategies -- including adaptive mixture-of-expert architectures, decomposition-based PINNs, and physics-informed operator learning models -- that do not appear explicitly in the curated knowledge base. These results show that collaborative reasoning among AI agents can yield emergent methodological innovation, suggesting a path toward scalable, transparent, and autonomous discovery in scientific computing.
AGI: Artificial General Intelligence
Rate paper: 👍 👎 ♥ Save
Abstract
We propose a new perspective for approaching artificial general intelligence (AGI) through an intelligence foundation model (IFM). Unlike existing foundation models (FMs), which specialize in pattern learning within specific domains such as language, vision, or time series, IFM aims to acquire the underlying mechanisms of intelligence by learning directly from diverse intelligent behaviors. Vision, language, and other cognitive abilities are manifestations of intelligent behavior; learning from this broad range of behaviors enables the system to internalize the general principles of intelligence. Based on the fact that intelligent behaviors emerge from the collective dynamics of biological neural systems, IFM consists of two core components: a novel network architecture, termed the state neural network, which captures neuron-like dynamic processes, and a new learning objective, neuron output prediction, which trains the system to predict neuronal outputs from collective dynamics. The state neural network emulates the temporal dynamics of biological neurons, allowing the system to store, integrate, and process information over time, while the neuron output prediction objective provides a unified computational principle for learning these structural dynamics from intelligent behaviors. Together, these innovations establish a biologically grounded and computationally scalable foundation for building systems capable of generalization, reasoning, and adaptive learning across domains, representing a step toward truly AGI.
Writer, Inc
Rate paper: 👍 👎 ♥ Save
Abstract
As AI agents proliferate across industries and applications, evaluating their performance based solely on infrastructural metrics such as latency, time-to-first-token, or token throughput is proving insufficient. These metrics fail to capture the quality of an agent's decisions, its operational autonomy, or its ultimate business value. This white paper proposes a novel, comprehensive framework of eleven outcome-based, task-agnostic performance metrics for AI agents that transcend domain boundaries. These metrics are designed to enable organizations to evaluate agents based on the quality of their decisions, their degree of autonomy, their adaptability to new challenges, and the tangible business value they deliver, regardless of the underlying model architecture or specific use case. We introduce metrics such as Goal Completion Rate (GCR), Autonomy Index (AIx), Multi-Step Task Resilience (MTR), and Business Impact Efficiency (BIE). Through a large-scale simulated experiment involving four distinct agent architectures (ReAct, Chain-of-Thought, Tool-Augmented, Hybrid) across five diverse domains (Healthcare, Finance, Marketing, Legal, and Customer Service), we demonstrate the framework's efficacy. Our results reveal significant performance trade-offs between different agent designs, highlighting the Hybrid Agent as the most consistently high-performing model across the majority of our proposed metrics, achieving an average Goal Completion Rate of 88.8\% and the highest Return on Investment (ROI). This work provides a robust, standardized methodology for the holistic evaluation of AI agents, paving the way for more effective development, deployment, and governance.
Deep Learning
ENSTA Paris
Rate paper: 👍 👎 ♥ Save
Abstract
Deep Neural Networks (DNNs) have demonstrated remarkable performance across various domains, including computer vision and natural language processing. However, they often struggle to accurately quantify the uncertainty of their predictions, limiting their broader adoption in critical real-world applications. Uncertainty Quantification (UQ) for Deep Learning seeks to address this challenge by providing methods to improve the reliability of uncertainty estimates. Although numerous techniques have been proposed, a unified tool offering a seamless workflow to evaluate and integrate these methods remains lacking. To bridge this gap, we introduce Torch-Uncertainty, a PyTorch and Lightning-based framework designed to streamline DNN training and evaluation with UQ techniques and metrics. In this paper, we outline the foundational principles of our library and present comprehensive experimental results that benchmark a diverse set of UQ methods across classification, segmentation, and regression tasks. Our library is available at https://github.com/ENSTA-U2IS-AI/Torch-Uncertainty
University of Michigan
Rate paper: 👍 👎 ♥ Save
Abstract
We propose a deep neural-operator framework for a general class of probability models. Under global Lipschitz conditions on the operator over the entire Euclidean space-and for a broad class of probabilistic models-we establish a universal approximation theorem with explicit network-size bounds for the proposed architecture. The underlying stochastic processes are required only to satisfy integrability and general tail-probability conditions. We verify these assumptions for both European and American option-pricing problems within the forward-backward SDE (FBSDE) framework, which in turn covers a broad class of operators arising from parabolic PDEs, with or without free boundaries. Finally, we present a numerical example for a basket of American options, demonstrating that the learned model produces optimal stopping boundaries for new strike prices without retraining.

We did not find tons of content matching your interests we've included some additional topics that are popular. Also be aware that if the topics is not present in arxiv we wont be able to recommend it.

AI Agents
Kamiwaza AI
Rate paper: 👍 👎 ♥ Save
Abstract
Enterprise adoption of agentic AI systems requires reliable evaluation methods that reflect real-world deployment scenarios. Traditional LLM benchmarks suffer from training data contamination and fail to measure agentic capabilities such as multi-step tool use and decision-making under uncertainty. We present the Kamiwaza Agentic Merit Index (KAMI) v0.1, an enterprise-focused benchmark that addresses both contamination resistance and agentic evaluation. Through 170,000 LLM test items processing over 5.5 billion tokens across 35 model configurations, we demonstrate that traditional benchmark rankings poorly predict practical agentic performance. Notably, newer generation models like Llama 4 or Qwen 3 do not always outperform their older generation variants on enterprise-relevant tasks, contradicting traditional benchmark trends. We also present insights on cost-performance tradeoffs, model-specific behavioral patterns, and the impact of reasoning capabilities on token efficiency -- findings critical for enterprises making deployment decisions.
UFMG
Rate paper: 👍 👎 ♥ Save
Abstract
Agentic code assistants are a new generation of AI systems capable of performing end-to-end software engineering tasks. While these systems promise unprecedented productivity gains, their behavior and effectiveness depend heavily on configuration files that define architectural constraints, coding practices, and tool usage policies. However, little is known about the structure and content of these configuration artifacts. This paper presents an empirical study of the configuration ecosystem of Claude Code, one of the most widely used agentic coding systems. We collected and analyzed 328 configuration files from public Claude Code projects to identify (i) the software engineering concerns and practices they specify and (ii) how these concerns co-occur within individual files. The results highlight the importance of defining a wide range of concerns and practices in agent configuration files, with particular emphasis on specifying the architecture the agent should follow.
AI and Society
YUX Design
Rate paper: 👍 👎 ♥ Save
Abstract
Frontier LLMs are optimised around high-resource assumptions about language, knowledge, devices, and connectivity. Whilst widely accessible, they often misfit conditions in the Global South. As a result, users must often perform additional work to make these systems usable. We term this alignment debt: the user-side burden that arises when AI systems fail to align with cultural, linguistic, infrastructural, or epistemic contexts. We develop and validate a four-part taxonomy of alignment debt through a survey of 411 AI users in Kenya and Nigeria. Among respondents measurable on this taxonomy (n = 385), prevalence is: Cultural and Linguistic (51.9%), Infrastructural (43.1%), Epistemic (33.8%), and Interaction (14.0%). Country comparisons show a divergence in Infrastructural and Interaction debt, challenging one-size-fits-Africa assumptions. Alignment debt is associated with compensatory labour, but responses vary by debt type: users facing Epistemic challenges verify outputs at significantly higher rates (91.5% vs. 80.8%; p = 0.037), and verification intensity correlates with cumulative debt burden (Spearmans rho = 0.147, p = 0.004). In contrast, Infrastructural and Interaction debts show weak or null associations with verification, indicating that some forms of misalignment cannot be resolved through verification alone. These findings show that fairness must be judged not only by model metrics but also by the burden imposed on users at the margins, compelling context-aware safeguards that alleviate alignment debt in Global South settings. The alignment debt framework provides an empirically grounded way to measure user burden, informing both design practice and emerging African AI governance efforts.
Los Alamos National Lab
Rate paper: 👍 👎 ♥ Save
Abstract
Artificial intelligence (AI) is reshaping how research is conceived, conducted, and communicated across fields from chemistry to biomedicine. This commentary examines how AI is transforming the research workflow. AI systems now help researchers manage the information deluge, filtering the literature, surfacing cross-disciplinary links for ideas and collaborations, generating hypotheses, and designing and executing experiments. These developments mark a shift from AI as a mere computational tool to AI as an active collaborator in science. Yet this transformation demands thoughtful integration and governance. We argue that at this time AI must augment but not replace human judgment in academic workflows such as peer review, ethical evaluation, and validation of results. This paper calls for the deliberate adoption of AI within the scientific practice through policies that promote transparency, reproducibility, and accountability.
Research Automation with AI
Rate paper: 👍 👎 ♥ Save
Abstract
Optimization modeling and solving are fundamental to the application of Operations Research (OR) in real-world decision making, yet the process of translating natural language problem descriptions into formal models and solver code remains highly expertise intensive. While recent advances in large language models (LLMs) have opened new opportunities for automation, the generalization ability and data efficiency of existing LLM-based methods are still limited, asmost require vast amounts of annotated or synthetic data, resulting in high costs and scalability barriers. In this work, we present OR-R1, a data-efficient training framework for automated optimization modeling and solving. OR-R1 first employs supervised fine-tuning (SFT) to help the model acquire the essential reasoning patterns for problem formulation and code generation from limited labeled data. In addition, it improves the capability and consistency through Test-Time Group Relative Policy Optimization (TGRPO). This two-stage design enables OR-R1 to leverage both scarce labeled and abundant unlabeled data for effective learning. Experiments show that OR-R1 achieves state-of-the-art performance with an average solving accuracy of $67.7\%$, using only $1/10$ the synthetic data required by prior methods such as ORLM, exceeding ORLM's solving accuracy by up to $4.2\%$. Remarkably, OR-R1 outperforms ORLM by over $2.4\%$ with just $100$ synthetic samples. Furthermore, TGRPO contributes an additional $3.1\%-6.4\%$ improvement in accuracy, significantly narrowing the gap between single-attempt (Pass@1) and multi-attempt (Pass@8) performance from $13\%$ to $7\%$. Extensive evaluations across diverse real-world benchmarks demonstrate that OR-R1 provides a robust, scalable, and cost-effective solution for automated OR optimization problem modeling and solving, lowering the expertise and data barriers for industrial OR applications.
Brown University
Rate paper: 👍 👎 ♥ Save
Abstract
Scientific Machine Learning (SciML) integrates data-driven inference with physical modeling to solve complex problems in science and engineering. However, the design of SciML architectures, loss formulations, and training strategies remains an expert-driven research process, requiring extensive experimentation and problem-specific insights. Here we introduce AgenticSciML, a collaborative multi-agent system in which over 10 specialized AI agents collaborate to propose, critique, and refine SciML solutions through structured reasoning and iterative evolution. The framework integrates structured debate, retrieval-augmented method memory, and ensemble-guided evolutionary search, enabling the agents to generate and assess new hypotheses about architectures and optimization procedures. Across physics-informed learning and operator learning tasks, the framework discovers solution methods that outperform single-agent and human-designed baselines by up to four orders of magnitude in error reduction. The agents produce novel strategies -- including adaptive mixture-of-expert architectures, decomposition-based PINNs, and physics-informed operator learning models -- that do not appear explicitly in the curated knowledge base. These results show that collaborative reasoning among AI agents can yield emergent methodological innovation, suggesting a path toward scalable, transparent, and autonomous discovery in scientific computing.
AGI: Artificial General Intelligence
Rate paper: 👍 👎 ♥ Save
Abstract
We propose a new perspective for approaching artificial general intelligence (AGI) through an intelligence foundation model (IFM). Unlike existing foundation models (FMs), which specialize in pattern learning within specific domains such as language, vision, or time series, IFM aims to acquire the underlying mechanisms of intelligence by learning directly from diverse intelligent behaviors. Vision, language, and other cognitive abilities are manifestations of intelligent behavior; learning from this broad range of behaviors enables the system to internalize the general principles of intelligence. Based on the fact that intelligent behaviors emerge from the collective dynamics of biological neural systems, IFM consists of two core components: a novel network architecture, termed the state neural network, which captures neuron-like dynamic processes, and a new learning objective, neuron output prediction, which trains the system to predict neuronal outputs from collective dynamics. The state neural network emulates the temporal dynamics of biological neurons, allowing the system to store, integrate, and process information over time, while the neuron output prediction objective provides a unified computational principle for learning these structural dynamics from intelligent behaviors. Together, these innovations establish a biologically grounded and computationally scalable foundation for building systems capable of generalization, reasoning, and adaptive learning across domains, representing a step toward truly AGI.
Writer, Inc
Rate paper: 👍 👎 ♥ Save
Abstract
As AI agents proliferate across industries and applications, evaluating their performance based solely on infrastructural metrics such as latency, time-to-first-token, or token throughput is proving insufficient. These metrics fail to capture the quality of an agent's decisions, its operational autonomy, or its ultimate business value. This white paper proposes a novel, comprehensive framework of eleven outcome-based, task-agnostic performance metrics for AI agents that transcend domain boundaries. These metrics are designed to enable organizations to evaluate agents based on the quality of their decisions, their degree of autonomy, their adaptability to new challenges, and the tangible business value they deliver, regardless of the underlying model architecture or specific use case. We introduce metrics such as Goal Completion Rate (GCR), Autonomy Index (AIx), Multi-Step Task Resilience (MTR), and Business Impact Efficiency (BIE). Through a large-scale simulated experiment involving four distinct agent architectures (ReAct, Chain-of-Thought, Tool-Augmented, Hybrid) across five diverse domains (Healthcare, Finance, Marketing, Legal, and Customer Service), we demonstrate the framework's efficacy. Our results reveal significant performance trade-offs between different agent designs, highlighting the Hybrid Agent as the most consistently high-performing model across the majority of our proposed metrics, achieving an average Goal Completion Rate of 88.8\% and the highest Return on Investment (ROI). This work provides a robust, standardized methodology for the holistic evaluation of AI agents, paving the way for more effective development, deployment, and governance.
Deep Learning
ENSTA Paris
Rate paper: 👍 👎 ♥ Save
Abstract
Deep Neural Networks (DNNs) have demonstrated remarkable performance across various domains, including computer vision and natural language processing. However, they often struggle to accurately quantify the uncertainty of their predictions, limiting their broader adoption in critical real-world applications. Uncertainty Quantification (UQ) for Deep Learning seeks to address this challenge by providing methods to improve the reliability of uncertainty estimates. Although numerous techniques have been proposed, a unified tool offering a seamless workflow to evaluate and integrate these methods remains lacking. To bridge this gap, we introduce Torch-Uncertainty, a PyTorch and Lightning-based framework designed to streamline DNN training and evaluation with UQ techniques and metrics. In this paper, we outline the foundational principles of our library and present comprehensive experimental results that benchmark a diverse set of UQ methods across classification, segmentation, and regression tasks. Our library is available at https://github.com/ENSTA-U2IS-AI/Torch-Uncertainty
University of Michigan
Rate paper: 👍 👎 ♥ Save
Abstract
We propose a deep neural-operator framework for a general class of probability models. Under global Lipschitz conditions on the operator over the entire Euclidean space-and for a broad class of probabilistic models-we establish a universal approximation theorem with explicit network-size bounds for the proposed architecture. The underlying stochastic processes are required only to satisfy integrability and general tail-probability conditions. We verify these assumptions for both European and American option-pricing problems within the forward-backward SDE (FBSDE) framework, which in turn covers a broad class of operators arising from parabolic PDEs, with or without free boundaries. Finally, we present a numerical example for a basket of American options, demonstrating that the learned model produces optimal stopping boundaries for new strike prices without retraining.

Interests not found

We did not find any papers that match the below interests. Try other terms also consider if the content exists in arxiv.org.
  • Relational Databases
You can edit or add more interests any time.