University of New South
Abstract
Environmental, Social, and Governance (ESG) disclosure frameworks such as SASB, TCFD, and IFRS S2 require organizations to compute and report numerous metrics for compliance, yet these requirements are embedded in long, unstructured PDF documents that are difficult to interpret, standardize, and audit. Manual extraction is unscalable, while unconstrained large language model (LLM) extraction often produces inconsistent entities, hallucinated relationships, missing provenance, and high validation failure rates. We present OntoMetric, an ontology-guided framework that transforms ESG regulatory documents into validated, AI- and web-ready knowledge graphs. OntoMetric operates through a three-stage pipeline: (1) structure-aware segmentation using table-of-contents boundaries, (2) ontology-constrained LLM extraction that embeds the ESGMKG schema into prompts while enriching entities with semantic fields for downstream reasoning, and (3) two-phase validation that combines LLM-based semantic verification with rule-based schema checking across entity, property, and relationship levels (VR001-VR006). The framework preserves both segment-level and page-level provenance for audit traceability. Evaluated on five ESG standards (SASB Commercial Banks, SASB Semiconductors, TCFD, IFRS S2, AASB S2) totaling 228 pages and 60 segments, OntoMetric achieves 65-90% semantic accuracy and 80-90% schema compliance, compared to 3-10% for baseline unconstrained extraction, at approximately 0.01 to 0.02 USD per validated entity. Our results demonstrate that combining symbolic ontology constraints with neural extraction enables reliable, auditable knowledge graphs suitable for regulatory compliance and web integration, supporting downstream applications such as sustainable-finance analytics, transparency portals, and automated compliance tools.
AI Summary - It ensures the extracted outputs are consistent with the ESGMKG ontology and maintain structural integrity. [3]
- The text describes an ontology-guided framework for automated ESG knowledge graph construction called OntoMetric. [2]
- ESG: Environmental, Social, and Governance ESGMKG: ESG Knowledge Graph Model LLM: Large Language Model OntoMetric: An Ontology-Guided Framework for Automated ESG Knowledge Graph Construction The framework provides a structured approach to extracting ESG knowledge graphs from regulatory text. [1]
Emory University
Abstract
Electronic health records (EHRs) support powerful clinical prediction models, but existing methods typically provide coarse, post hoc explanations that offer limited value for patient-level decision making. We introduce a knowledge graph (KG)-guided chain-of-thought (CoT) framework that generates clinically grounded and temporally consistent reasoning for visit-level disease prediction in MIMIC-III. ICD-9 codes are mapped to PrimeKG, from which disease-relevant nodes and multi-hop reasoning paths are extracted and used as scaffolds for CoT generation; only explanations whose conclusions match observed outcomes are retained. Lightweight LLaMA-3.1-Instruct-8B and Gemma-7B models are then fine-tuned on this supervision corpus. Across ten PrimeKG-mapped diseases and limited training cohorts (400 and 1000 cases), KG-guided models outperform strong classical baselines, achieving AUROC values of 0.66 to 0.70 and macro-AUPR values of 0.40 to 0.47. The models also transfer zero-shot to the CRADLE cohort, improving accuracy from approximately 0.40 to 0.51 up to 0.72 to 0.77. A blinded clinician evaluation shows consistent preference for KG-guided CoT explanations in clarity, relevance, and clinical correctness.