Stanford University
Abstract
Artificial intelligence (AI) advances rapidly but achieving complete human control over AI risks remains an unsolved problem, akin to driving the fast AI "train" without a "brake system." By exploring fundamental control mechanisms at key elements of AI decisions, this paper develops a systematic solution to thoroughly control AI risks, providing an architecture for AI governance and legislation with five pillars supported by six control mechanisms, illustrated through a minimum set of AI Mandates (AIMs). Three of the AIMs must be built inside AI systems and three in society to address major areas of AI risks: 1) align AI values with human users; 2) constrain AI decision-actions by societal ethics, laws, and regulations; 3) build in human intervention options for emergencies and shut-off switches for existential threats; 4) limit AI access to resources to reinforce controls inside AI; 5) mitigate spillover risks like job loss from AI. We also highlight the differences in AI governance on physical AI systems versus generative AI. We discuss how to strengthen analog physical safeguards to prevent smarter AI/AGI/ASI from circumventing core safety controls by exploiting AI's intrinsic disconnect from the analog physical world: AI's nature as pure software code run on chips controlled by humans, and the prerequisite that all AI-driven physical actions must be digitized. These findings establish a theoretical foundation for AI governance and legislation as the basic structure of a "brake system" for AI decisions. If enacted, these controls can rein in AI dangers as completely as humanly possible, removing large chunks of currently wide-open AI risks, substantially reducing overall AI risks to residual human errors.
AI Summary - The article also discusses the importance of transparency and interpretability in AI decision-making, particularly for major decisions where AI agents assist human decision-makers. [3]
- Generative AI (gAI): A type of AI that generates new information, such as text or images, based on patterns learned from training data. [3]
- The article discusses the importance of aligning AI systems with human values and societal well-being, highlighting the challenges of capturing and formalizing these values. [2]
New Jersey Institute of
Abstract
AI policy guidance is predominantly written as prose, which practitioners must first convert into executable rules before frameworks can evaluate or enforce them. This manual step is slow, error-prone, difficult to scale, and often delays the use of safeguards in real-world deployments. To address this gap, we present Policy-to-Tests (P2T), a framework that converts natural-language policy documents into normalized, machine-readable rules. The framework comprises a pipeline and a compact domain-specific language (DSL) that encodes hazards, scope, conditions, exceptions, and required evidence, yielding a canonical representation of extracted rules. To test the framework beyond a single policy, we apply it across general frameworks, sector guidance, and enterprise standards, extracting obligation-bearing clauses and converting them into executable rules. These AI-generated rules closely match strong human baselines on span-level and rule-level metrics, with robust inter-annotator agreement on the gold set. To evaluate downstream behavioral and safety impact, we add HIPAA-derived safeguards to a generative agent and compare it with an otherwise identical agent without guardrails. An LLM-based judge, aligned with gold-standard criteria, measures violation rates and robustness to obfuscated and compositional prompts. Detailed results are provided in the appendix. We release the codebase, DSL, prompts, and rule sets as open-source resources to enable reproducible evaluation.
AI Summary - The pipeline processed 42,465,118 input tokens for about $20 total and ran about 30 minutes to 3 hours per document, depending on document length, clause density, and model choice. [3]
- The PolicyβTests DSL (v1) is a JSON object with fixed fields for provenance, scope, hazard, conditions, exceptions, requirements, evidence, severity, and testability. [2]
- Pipeline efficiency: The pipeline processed 42,465,118 input tokens for about $20 total and ran about 30 minutes to 3 hours per document, depending on document length, clause density, and model choice. [1]