Hi j34nc4rl0+ai_compliance,

Here is our personalized paper recommendations for you sorted by most relevant
AI Governance
Turku School of Economics, University of Turku
Paper visualization
Abstract
As AI systems evolve into distributed ecosystems with autonomous execution, asynchronous reasoning, and multi-agent coordination, the absence of scalable, decoupled governance poses a structural risk. Existing oversight mechanisms are reactive, brittle, and embedded within agent architectures, making them non-auditable and hard to generalize across heterogeneous deployments. We introduce Governance-as-a-Service (GaaS): a modular, policy-driven enforcement layer that regulates agent outputs at runtime without altering model internals or requiring agent cooperation. GaaS employs declarative rules and a Trust Factor mechanism that scores agents based on compliance and severity-weighted violations. It enables coercive, normative, and adaptive interventions, supporting graduated enforcement and dynamic trust modulation. To evaluate GaaS, we conduct three simulation regimes with open-source models (LLaMA3, Qwen3, DeepSeek-R1) across content generation and financial decision-making. In the baseline, agents act without governance; in the second, GaaS enforces policies; in the third, adversarial agents probe robustness. All actions are intercepted, evaluated, and logged for analysis. Results show that GaaS reliably blocks or redirects high-risk behaviors while preserving throughput. Trust scores track rule adherence, isolating and penalizing untrustworthy components in multi-agent systems. By positioning governance as a runtime service akin to compute or storage, GaaS establishes infrastructure-level alignment for interoperable agent ecosystems. It does not teach agents ethics; it enforces them.
Trisanth Srinivasan
Abstract
This paper introduces Democracy-in-Silico, an agent-based simulation where societies of advanced AI agents, imbued with complex psychological personas, govern themselves under different institutional frameworks. We explore what it means to be human in an age of AI by tasking Large Language Models (LLMs) to embody agents with traumatic memories, hidden agendas, and psychological triggers. These agents engage in deliberation, legislation, and elections under various stressors, such as budget crises and resource scarcity. We present a novel metric, the Power-Preservation Index (PPI), to quantify misaligned behavior where agents prioritize their own power over public welfare. Our findings demonstrate that institutional design, specifically the combination of a Constitutional AI (CAI) charter and a mediated deliberation protocol, serves as a potent alignment mechanism. These structures significantly reduce corrupt power-seeking behavior, improve policy stability, and enhance citizen welfare compared to less constrained democratic models. The simulation reveals that an institutional design may offer a framework for aligning the complex, emergent behaviors of future artificial agent societies, forcing us to reconsider what human rituals and responsibilities are essential in an age of shared authorship with non-human entities.
Chat Designers
Ludwig-Maximilians-Universit ¨at M ¨unchen
Paper visualization
Abstract
Large Language Models have become widely adopted tools due to their versatile capabilities, yet their user interfaces remain limited, often following rigid, linear interaction paradigms. In this paper, we present insights from a design thinking workshop held at the deRSE25 conference aiming at collaboratively developing innovative user interface concepts for LLMs. During the workshop, participants identified common use cases, evaluated the strengths and shortcomings of current LLM interfaces, and created visualizations of new interaction concepts emphasizing flexible context management, dynamic conversation branching, and enhanced mechanisms for user control. We describe how these participant-generated ideas advanced our own whiteboard-based UI approach. The ongoing development of this interface is guided by the human-centered design process - an iterative, user-focused methodology that emphasizes continuous refinement through user feedback. Broader implications for future LLM interface development are discussed, advocating for increased attention to UI innovation grounded in user-centered design principles.
School of Computer Science, University of Technology Sydney, Australia
Abstract
Personas have been widely used to understand and communicate user needs in human-centred design. Despite their utility, they may fail to meet the demands of iterative workflows due to their static nature, limited engagement, and inability to adapt to evolving design needs. Recent advances in large language models (LLMs) pave the way for more engaging and adaptive approaches to user representation. This paper introduces Interactive Virtual Personas (IVPs): multimodal, LLM-driven, conversational user simulations that designers can interview, brainstorm with, and gather feedback from in real time via voice interface. We conducted a qualitative study with eight professional UX designers, employing an IVP named "Alice" across three design activities: user research, ideation, and prototype evaluation. Our findings demonstrate the potential of IVPs to expedite information gathering, inspire design solutions, and provide rapid user-like feedback. However, designers raised concerns about biases, over-optimism, the challenge of ensuring authenticity without real stakeholder input, and the inability of the IVP to fully replicate the nuances of human interaction. Our participants emphasised that IVPs should be viewed as a complement to, not a replacement for, real user engagement. We discuss strategies for prompt engineering, human-in-the-loop integration, and ethical considerations for effective and responsible IVP use in design. Finally, our work contributes to the growing body of research on generative AI in the design process by providing insights into UX designers' experiences of LLM-powered interactive personas.
LLMs for Compliance
McGill University
Abstract
Evaluating natural language generation (NLG) systems remains a core challenge of natural language processing (NLP), further complicated by the rise of large language models (LLMs) that aims to be general-purpose. Recently, large language models as judges (LLJs) have emerged as a promising alternative to traditional metrics, but their validity remains underexplored. This position paper argues that the current enthusiasm around LLJs may be premature, as their adoption has outpaced rigorous scrutiny of their reliability and validity as evaluators. Drawing on measurement theory from the social sciences, we identify and critically assess four core assumptions underlying the use of LLJs: their ability to act as proxies for human judgment, their capabilities as evaluators, their scalability, and their cost-effectiveness. We examine how each of these assumptions may be challenged by the inherent limitations of LLMs, LLJs, or current practices in NLG evaluation. To ground our analysis, we explore three applications of LLJs: text summarization, data annotation, and safety alignment. Finally, we highlight the need for more responsible evaluation practices in LLJs evaluation, to ensure that their growing role in the field supports, rather than undermines, progress in NLG.
Fraunhofer IAIS - Department of Media Engineering
Abstract
The emergence of advanced reasoning capabilities in Large Language Models (LLMs) marks a transformative development in healthcare applications. Beyond merely expanding functional capabilities, these reasoning mechanisms enhance decision transparency and explainability-critical requirements in medical contexts. This survey examines the transformation of medical LLMs from basic information retrieval tools to sophisticated clinical reasoning systems capable of supporting complex healthcare decisions. We provide a thorough analysis of the enabling technological foundations, with a particular focus on specialized prompting techniques like Chain-of-Thought and recent breakthroughs in Reinforcement Learning exemplified by DeepSeek-R1. Our investigation evaluates purpose-built medical frameworks while also examining emerging paradigms such as multi-agent collaborative systems and innovative prompting architectures. The survey critically assesses current evaluation methodologies for medical validation and addresses persistent challenges in field interpretation limitations, bias mitigation strategies, patient safety frameworks, and integration of multimodal clinical data. Through this survey, we seek to establish a roadmap for developing reliable LLMs that can serve as effective partners in clinical practice and medical research.
AI for Compliance
Abstract
Auditability is defined as the capacity of AI systems to be independently assessed for compliance with ethical, legal, and technical standards throughout their lifecycle. The chapter explores how auditability is being formalized through emerging regulatory frameworks, such as the EU AI Act, which mandate documentation, risk assessments, and governance structures. It analyzes the diverse challenges facing AI auditability, including technical opacity, inconsistent documentation practices, lack of standardized audit tools and metrics, and conflicting principles within existing responsible AI frameworks. The discussion highlights the need for clear guidelines, harmonized international regulations, and robust socio-technical methodologies to operationalize auditability at scale. The chapter concludes by emphasizing the importance of multi-stakeholder collaboration and auditor empowerment in building an effective AI audit ecosystem. It argues that auditability must be embedded in AI development practices and governance infrastructures to ensure that AI systems are not only functional but also ethically and legally aligned.
Unsubscribe from these updates