IBM
Abstract
The rapid shift from stateless large language models (LLMs) to autonomous, goal-driven agents raises a central question: When is agentic AI truly necessary? While agents enable multi-step reasoning, persistent memory, and tool orchestration, deploying them indiscriminately leads to higher cost, complexity, and risk.
We present STRIDE (Systematic Task Reasoning Intelligence Deployment Evaluator), a framework that provides principled recommendations for selecting between three modalities: (i) direct LLM calls, (ii) guided AI assistants, and (iii) fully autonomous agentic AI. STRIDE integrates structured task decomposition, dynamism attribution, and self-reflection requirement analysis to produce an Agentic Suitability Score, ensuring that full agentic autonomy is reserved for tasks with inherent dynamism or evolving context.
Evaluated across 30 real-world tasks spanning SRE, compliance, and enterprise automation, STRIDE achieved 92% accuracy in modality selection, reduced unnecessary agent deployments by 45%, and cut resource costs by 37%. Expert validation over six months in SRE and compliance domains confirmed its practical utility, with domain specialists agreeing that STRIDE effectively distinguishes between tasks requiring simple LLM calls, guided assistants, or full agentic autonomy. This work reframes agent adoption as a necessity-driven design decision, ensuring autonomy is applied only when its benefits justify the costs.
AI Summary - The framework can be used in conjunction with existing benchmarks to evaluate the performance of agentic AI systems. [3]
- Future extensions to STRIDE will include multimodal tasks, reinforcement learning for weight tuning, and validation at enterprise scale. [3]
- STRIDE's scoring functions are heuristic by design, striking a balance between interpretability and generality. [3]
- STRIDE (Systematic Task Reasoning Intelligence Deployment Evaluator) is a framework that determines when tasks require agentic AI, AI assistants, or simple LLM calls. [2]
- STRIDE integrates five analytical dimensions: structured task decomposition, dynamic reasoning and tool-interaction scoring, dynamism attribution analysis, self-reflection requirement assessment, and agentic suitability inference. [1]
Google DeepMind
Abstract
Large Language Model (LLM) agents have demonstrated impressive capabilities for social interaction and are increasingly being deployed in situations where they might engage with both human and artificial agents. These interactions represent a critical frontier for LLM-based agents, yet existing evaluation methods fail to measure how well these capabilities generalize to novel social situations. In this paper, we introduce a method for evaluating the ability of LLM-based agents to cooperate in zero-shot, mixed-motive environments using Concordia, a natural language multi-agent simulation environment. Our method measures general cooperative intelligence by testing an agent's ability to identify and exploit opportunities for mutual gain across diverse partners and contexts. We present empirical results from the NeurIPS 2024 Concordia Contest, where agents were evaluated on their ability to achieve mutual gains across a suite of diverse scenarios ranging from negotiation to collective action problems. Our findings reveal significant gaps between current agent capabilities and the robust generalization required for reliable cooperation, particularly in scenarios demanding persuasion and norm enforcement.