🎯 Top Personalized Recommendations
Naval Research Laboratory
Why we think this paper is great for you:
This paper directly addresses how to enhance large language models in performing agentic tasks. You will find valuable insights into improving the efficiency of LLM-based agents.
Abstract
Large language models (LLMs) often struggle when performing agentic tasks without substantial tool support, prom-pt engineering, or fine tuning. Despite research showing that domain-dependent, procedural knowledge can dramatically increase planning efficiency, little work evaluates its potential for improving LLM performance on agentic tasks that may require implicit planning. We formalize, implement, and evaluate an agentic LLM workflow that leverages procedural knowledge in the form of a hierarchical task network (HTN). Empirical results of our implementation show that hand-coded HTNs can dramatically improve LLM performance on agentic tasks, and using HTNs can boost a 20b or 70b parameter LLM to outperform a much larger 120b parameter LLM baseline. Furthermore, LLM-created HTNs improve overall performance, though less so. The results suggest that leveraging expertise--from humans, documents, or LLMs--to curate procedural knowledge will become another important tool for improving LLM workflows.
AI Summary - Procedural knowledge, specifically Hierarchical Task Networks (HTNs), dramatically improves LLM performance on complex agentic tasks, often enabling smaller models to outperform larger ones without such guidance. [3]
- Implementing procedural knowledge via HTNs significantly reduces the number of iterations required for task completion, leading to comparable or even faster overall runtime despite potentially increasing per-iteration time. [3]
- Procedural Knowledge: Generally describes a sequence for solving a problem, playing a central role in AI for decomposing abstract tasks, controlling search, and managing problem-solving strategies. [3]
- Hierarchical Task Network (HTN): A representation of procedural knowledge where complex abstract tasks are decomposed into totally ordered sequences of subtasks, which can be either complex (requiring further decomposition) or primitive (concrete executable actions). [3]
- HTN-guided LLMs exhibit a slower degradation in task success rate as problem complexity increases, demonstrating enhanced robustness compared to unguided LLMs. [2]
- While LLM-generated HTNs improve performance over unguided LLMs, human-coded HTNs consistently yield superior results due to greater specificity and accuracy. [2]
- The use of natural language descriptions for HTN methods in ProcLLM offers a flexible and intuitive approach to high-level planning, avoiding the need for formal planning language translations like PDDL. [2]
- Procedural knowledge mitigates common agentic LLM failures, such as action looping and inefficient exploration, by providing structured guidance and explicit subtask verification. [2]
- Agentic LLM: A large language model framework that can act, use tools, and plan to autonomously accomplish tasks, often involving workflow techniques like prompt chaining and memory-augmented reasoning. [2]
- The ProcLLM framework effectively integrates HTNs into agentic LLM workflows, providing explicit task decomposition and state tracking that current LLMs inherently lack. [1]
HKUST
Why we think this paper is great for you:
This survey provides a comprehensive overview of scaling environments for LLM-based agents. It's essential for understanding how to cultivate adaptive behavior and long-term decision-making capabilities in agents.
Abstract
LLM-based agents can autonomously accomplish complex tasks across various domains. However, to further cultivate capabilities such as adaptive behavior and long-term decision-making, training on static datasets built from human-level knowledge is insufficient. These datasets are costly to construct and lack both dynamism and realism. A growing consensus is that agents should instead interact directly with environments and learn from experience through reinforcement learning. We formalize this iterative process as the Generation-Execution-Feedback (GEF) loop, where environments generate tasks to challenge agents, return observations in response to agents' actions during task execution, and provide evaluative feedback on rollouts for subsequent learning. Under this paradigm, environments function as indispensable producers of experiential data, highlighting the need to scale them toward greater complexity, realism, and interactivity. In this survey, we systematically review representative methods for environment scaling from a pioneering environment-centric perspective and organize them along the stages of the GEF loop, namely task generation, task execution, and feedback. We further analyze benchmarks, implementation strategies, and applications, consolidating fragmented advances and outlining future research directions for agent intelligence.
Writer, Inc
Why we think this paper is great for you:
Understanding how to effectively evaluate AI agents is crucial for their development and deployment. This paper offers a new perspective on assessing agent performance beyond traditional metrics.
Abstract
As AI agents proliferate across industries and applications, evaluating their performance based solely on infrastructural metrics such as latency, time-to-first-token, or token throughput is proving insufficient. These metrics fail to capture the quality of an agent's decisions, its operational autonomy, or its ultimate business value. This white paper proposes a novel, comprehensive framework of eleven outcome-based, task-agnostic performance metrics for AI agents that transcend domain boundaries. These metrics are designed to enable organizations to evaluate agents based on the quality of their decisions, their degree of autonomy, their adaptability to new challenges, and the tangible business value they deliver, regardless of the underlying model architecture or specific use case. We introduce metrics such as Goal Completion Rate (GCR), Autonomy Index (AIx), Multi-Step Task Resilience (MTR), and Business Impact Efficiency (BIE). Through a large-scale simulated experiment involving four distinct agent architectures (ReAct, Chain-of-Thought, Tool-Augmented, Hybrid) across five diverse domains (Healthcare, Finance, Marketing, Legal, and Customer Service), we demonstrate the framework's efficacy. Our results reveal significant performance trade-offs between different agent designs, highlighting the Hybrid Agent as the most consistently high-performing model across the majority of our proposed metrics, achieving an average Goal Completion Rate of 88.8\% and the highest Return on Investment (ROI). This work provides a robust, standardized methodology for the holistic evaluation of AI agents, paving the way for more effective development, deployment, and governance.
Kamiwaza AI
Why we think this paper is great for you:
For practical applications, reliable evaluation methods for agentic AI systems are vital. This work provides lessons from extensive evaluations, focusing on real-world deployment scenarios.
Abstract
Enterprise adoption of agentic AI systems requires reliable evaluation methods that reflect real-world deployment scenarios. Traditional LLM benchmarks suffer from training data contamination and fail to measure agentic capabilities such as multi-step tool use and decision-making under uncertainty. We present the Kamiwaza Agentic Merit Index (KAMI) v0.1, an enterprise-focused benchmark that addresses both contamination resistance and agentic evaluation. Through 170,000 LLM test items processing over 5.5 billion tokens across 35 model configurations, we demonstrate that traditional benchmark rankings poorly predict practical agentic performance. Notably, newer generation models like Llama 4 or Qwen 3 do not always outperform their older generation variants on enterprise-relevant tasks, contradicting traditional benchmark trends. We also present insights on cost-performance tradeoffs, model-specific behavioral patterns, and the impact of reasoning capabilities on token efficiency -- findings critical for enterprises making deployment decisions.
Brown University
Why we think this paper is great for you:
Exploring collaborative multi-agent systems is a key area for advanced AI agent development. This paper delves into how such systems can lead to emergent discovery in complex domains.
Abstract
Scientific Machine Learning (SciML) integrates data-driven inference with physical modeling to solve complex problems in science and engineering. However, the design of SciML architectures, loss formulations, and training strategies remains an expert-driven research process, requiring extensive experimentation and problem-specific insights. Here we introduce AgenticSciML, a collaborative multi-agent system in which over 10 specialized AI agents collaborate to propose, critique, and refine SciML solutions through structured reasoning and iterative evolution. The framework integrates structured debate, retrieval-augmented method memory, and ensemble-guided evolutionary search, enabling the agents to generate and assess new hypotheses about architectures and optimization procedures. Across physics-informed learning and operator learning tasks, the framework discovers solution methods that outperform single-agent and human-designed baselines by up to four orders of magnitude in error reduction. The agents produce novel strategies -- including adaptive mixture-of-expert architectures, decomposition-based PINNs, and physics-informed operator learning models -- that do not appear explicitly in the curated knowledge base. These results show that collaborative reasoning among AI agents can yield emergent methodological innovation, suggesting a path toward scalable, transparent, and autonomous discovery in scientific computing.
UFMG
Why we think this paper is great for you:
This paper offers specific insights into the configuration and behavior of agentic code assistants. It's highly relevant for understanding how AI agents perform end-to-end software engineering tasks.
Abstract
Agentic code assistants are a new generation of AI systems capable of performing end-to-end software engineering tasks. While these systems promise unprecedented productivity gains, their behavior and effectiveness depend heavily on configuration files that define architectural constraints, coding practices, and tool usage policies. However, little is known about the structure and content of these configuration artifacts. This paper presents an empirical study of the configuration ecosystem of Claude Code, one of the most widely used agentic coding systems. We collected and analyzed 328 configuration files from public Claude Code projects to identify (i) the software engineering concerns and practices they specify and (ii) how these concerns co-occur within individual files. The results highlight the importance of defining a wide range of concerns and practices in agent configuration files, with particular emphasis on specifying the architecture the agent should follow.
Why we think this paper is great for you:
You will find this paper interesting for its exploration of how large language models can automate complex problem-solving. It demonstrates LLMs' potential in performing sophisticated, autonomous tasks.
Abstract
Optimization modeling and solving are fundamental to the application of Operations Research (OR) in real-world decision making, yet the process of translating natural language problem descriptions into formal models and solver code remains highly expertise intensive. While recent advances in large language models (LLMs) have opened new opportunities for automation, the generalization ability and data efficiency of existing LLM-based methods are still limited, asmost require vast amounts of annotated or synthetic data, resulting in high costs and scalability barriers. In this work, we present OR-R1, a data-efficient training framework for automated optimization modeling and solving. OR-R1 first employs supervised fine-tuning (SFT) to help the model acquire the essential reasoning patterns for problem formulation and code generation from limited labeled data. In addition, it improves the capability and consistency through Test-Time Group Relative Policy Optimization (TGRPO). This two-stage design enables OR-R1 to leverage both scarce labeled and abundant unlabeled data for effective learning. Experiments show that OR-R1 achieves state-of-the-art performance with an average solving accuracy of $67.7\%$, using only $1/10$ the synthetic data required by prior methods such as ORLM, exceeding ORLM's solving accuracy by up to $4.2\%$. Remarkably, OR-R1 outperforms ORLM by over $2.4\%$ with just $100$ synthetic samples. Furthermore, TGRPO contributes an additional $3.1\%-6.4\%$ improvement in accuracy, significantly narrowing the gap between single-attempt (Pass@1) and multi-attempt (Pass@8) performance from $13\%$ to $7\%$. Extensive evaluations across diverse real-world benchmarks demonstrate that OR-R1 provides a robust, scalable, and cost-effective solution for automated OR optimization problem modeling and solving, lowering the expertise and data barriers for industrial OR applications.
AI and Society
YUX Design
Abstract
Frontier LLMs are optimised around high-resource assumptions about language, knowledge, devices, and connectivity. Whilst widely accessible, they often misfit conditions in the Global South. As a result, users must often perform additional work to make these systems usable. We term this alignment debt: the user-side burden that arises when AI systems fail to align with cultural, linguistic, infrastructural, or epistemic contexts. We develop and validate a four-part taxonomy of alignment debt through a survey of 411 AI users in Kenya and Nigeria. Among respondents measurable on this taxonomy (n = 385), prevalence is: Cultural and Linguistic (51.9%), Infrastructural (43.1%), Epistemic (33.8%), and Interaction (14.0%). Country comparisons show a divergence in Infrastructural and Interaction debt, challenging one-size-fits-Africa assumptions. Alignment debt is associated with compensatory labour, but responses vary by debt type: users facing Epistemic challenges verify outputs at significantly higher rates (91.5% vs. 80.8%; p = 0.037), and verification intensity correlates with cumulative debt burden (Spearmans rho = 0.147, p = 0.004). In contrast, Infrastructural and Interaction debts show weak or null associations with verification, indicating that some forms of misalignment cannot be resolved through verification alone. These findings show that fairness must be judged not only by model metrics but also by the burden imposed on users at the margins, compelling context-aware safeguards that alleviate alignment debt in Global South settings. The alignment debt framework provides an empirically grounded way to measure user burden, informing both design practice and emerging African AI governance efforts.
Los Alamos National Lab
Abstract
Artificial intelligence (AI) is reshaping how research is conceived, conducted, and communicated across fields from chemistry to biomedicine. This commentary examines how AI is transforming the research workflow. AI systems now help researchers manage the information deluge, filtering the literature, surfacing cross-disciplinary links for ideas and collaborations, generating hypotheses, and designing and executing experiments. These developments mark a shift from AI as a mere computational tool to AI as an active collaborator in science. Yet this transformation demands thoughtful integration and governance. We argue that at this time AI must augment but not replace human judgment in academic workflows such as peer review, ethical evaluation, and validation of results. This paper calls for the deliberate adoption of AI within the scientific practice through policies that promote transparency, reproducibility, and accountability.
AGI: Artificial General Intelligence
Abstract
We propose a new perspective for approaching artificial general intelligence (AGI) through an intelligence foundation model (IFM). Unlike existing foundation models (FMs), which specialize in pattern learning within specific domains such as language, vision, or time series, IFM aims to acquire the underlying mechanisms of intelligence by learning directly from diverse intelligent behaviors. Vision, language, and other cognitive abilities are manifestations of intelligent behavior; learning from this broad range of behaviors enables the system to internalize the general principles of intelligence. Based on the fact that intelligent behaviors emerge from the collective dynamics of biological neural systems, IFM consists of two core components: a novel network architecture, termed the state neural network, which captures neuron-like dynamic processes, and a new learning objective, neuron output prediction, which trains the system to predict neuronal outputs from collective dynamics. The state neural network emulates the temporal dynamics of biological neurons, allowing the system to store, integrate, and process information over time, while the neuron output prediction objective provides a unified computational principle for learning these structural dynamics from intelligent behaviors. Together, these innovations establish a biologically grounded and computationally scalable foundation for building systems capable of generalization, reasoning, and adaptive learning across domains, representing a step toward truly AGI.
We did not find tons of content matching your interests we've included some additional topics that are popular.
Also be aware that if the topics is not present in arxiv we wont be able to recommend it.
AI and Society
YUX Design
Abstract
Frontier LLMs are optimised around high-resource assumptions about language, knowledge, devices, and connectivity. Whilst widely accessible, they often misfit conditions in the Global South. As a result, users must often perform additional work to make these systems usable. We term this alignment debt: the user-side burden that arises when AI systems fail to align with cultural, linguistic, infrastructural, or epistemic contexts. We develop and validate a four-part taxonomy of alignment debt through a survey of 411 AI users in Kenya and Nigeria. Among respondents measurable on this taxonomy (n = 385), prevalence is: Cultural and Linguistic (51.9%), Infrastructural (43.1%), Epistemic (33.8%), and Interaction (14.0%). Country comparisons show a divergence in Infrastructural and Interaction debt, challenging one-size-fits-Africa assumptions. Alignment debt is associated with compensatory labour, but responses vary by debt type: users facing Epistemic challenges verify outputs at significantly higher rates (91.5% vs. 80.8%; p = 0.037), and verification intensity correlates with cumulative debt burden (Spearmans rho = 0.147, p = 0.004). In contrast, Infrastructural and Interaction debts show weak or null associations with verification, indicating that some forms of misalignment cannot be resolved through verification alone. These findings show that fairness must be judged not only by model metrics but also by the burden imposed on users at the margins, compelling context-aware safeguards that alleviate alignment debt in Global South settings. The alignment debt framework provides an empirically grounded way to measure user burden, informing both design practice and emerging African AI governance efforts.
Los Alamos National Lab
Abstract
Artificial intelligence (AI) is reshaping how research is conceived, conducted, and communicated across fields from chemistry to biomedicine. This commentary examines how AI is transforming the research workflow. AI systems now help researchers manage the information deluge, filtering the literature, surfacing cross-disciplinary links for ideas and collaborations, generating hypotheses, and designing and executing experiments. These developments mark a shift from AI as a mere computational tool to AI as an active collaborator in science. Yet this transformation demands thoughtful integration and governance. We argue that at this time AI must augment but not replace human judgment in academic workflows such as peer review, ethical evaluation, and validation of results. This paper calls for the deliberate adoption of AI within the scientific practice through policies that promote transparency, reproducibility, and accountability.
Research Automation with AI
Abstract
Optimization modeling and solving are fundamental to the application of Operations Research (OR) in real-world decision making, yet the process of translating natural language problem descriptions into formal models and solver code remains highly expertise intensive. While recent advances in large language models (LLMs) have opened new opportunities for automation, the generalization ability and data efficiency of existing LLM-based methods are still limited, asmost require vast amounts of annotated or synthetic data, resulting in high costs and scalability barriers. In this work, we present OR-R1, a data-efficient training framework for automated optimization modeling and solving. OR-R1 first employs supervised fine-tuning (SFT) to help the model acquire the essential reasoning patterns for problem formulation and code generation from limited labeled data. In addition, it improves the capability and consistency through Test-Time Group Relative Policy Optimization (TGRPO). This two-stage design enables OR-R1 to leverage both scarce labeled and abundant unlabeled data for effective learning. Experiments show that OR-R1 achieves state-of-the-art performance with an average solving accuracy of $67.7\%$, using only $1/10$ the synthetic data required by prior methods such as ORLM, exceeding ORLM's solving accuracy by up to $4.2\%$. Remarkably, OR-R1 outperforms ORLM by over $2.4\%$ with just $100$ synthetic samples. Furthermore, TGRPO contributes an additional $3.1\%-6.4\%$ improvement in accuracy, significantly narrowing the gap between single-attempt (Pass@1) and multi-attempt (Pass@8) performance from $13\%$ to $7\%$. Extensive evaluations across diverse real-world benchmarks demonstrate that OR-R1 provides a robust, scalable, and cost-effective solution for automated OR optimization problem modeling and solving, lowering the expertise and data barriers for industrial OR applications.
Brown University
Abstract
Scientific Machine Learning (SciML) integrates data-driven inference with physical modeling to solve complex problems in science and engineering. However, the design of SciML architectures, loss formulations, and training strategies remains an expert-driven research process, requiring extensive experimentation and problem-specific insights. Here we introduce AgenticSciML, a collaborative multi-agent system in which over 10 specialized AI agents collaborate to propose, critique, and refine SciML solutions through structured reasoning and iterative evolution. The framework integrates structured debate, retrieval-augmented method memory, and ensemble-guided evolutionary search, enabling the agents to generate and assess new hypotheses about architectures and optimization procedures. Across physics-informed learning and operator learning tasks, the framework discovers solution methods that outperform single-agent and human-designed baselines by up to four orders of magnitude in error reduction. The agents produce novel strategies -- including adaptive mixture-of-expert architectures, decomposition-based PINNs, and physics-informed operator learning models -- that do not appear explicitly in the curated knowledge base. These results show that collaborative reasoning among AI agents can yield emergent methodological innovation, suggesting a path toward scalable, transparent, and autonomous discovery in scientific computing.
AGI: Artificial General Intelligence
Abstract
We propose a new perspective for approaching artificial general intelligence (AGI) through an intelligence foundation model (IFM). Unlike existing foundation models (FMs), which specialize in pattern learning within specific domains such as language, vision, or time series, IFM aims to acquire the underlying mechanisms of intelligence by learning directly from diverse intelligent behaviors. Vision, language, and other cognitive abilities are manifestations of intelligent behavior; learning from this broad range of behaviors enables the system to internalize the general principles of intelligence. Based on the fact that intelligent behaviors emerge from the collective dynamics of biological neural systems, IFM consists of two core components: a novel network architecture, termed the state neural network, which captures neuron-like dynamic processes, and a new learning objective, neuron output prediction, which trains the system to predict neuronal outputs from collective dynamics. The state neural network emulates the temporal dynamics of biological neurons, allowing the system to store, integrate, and process information over time, while the neuron output prediction objective provides a unified computational principle for learning these structural dynamics from intelligent behaviors. Together, these innovations establish a biologically grounded and computationally scalable foundation for building systems capable of generalization, reasoning, and adaptive learning across domains, representing a step toward truly AGI.
Writer, Inc
Abstract
As AI agents proliferate across industries and applications, evaluating their performance based solely on infrastructural metrics such as latency, time-to-first-token, or token throughput is proving insufficient. These metrics fail to capture the quality of an agent's decisions, its operational autonomy, or its ultimate business value. This white paper proposes a novel, comprehensive framework of eleven outcome-based, task-agnostic performance metrics for AI agents that transcend domain boundaries. These metrics are designed to enable organizations to evaluate agents based on the quality of their decisions, their degree of autonomy, their adaptability to new challenges, and the tangible business value they deliver, regardless of the underlying model architecture or specific use case. We introduce metrics such as Goal Completion Rate (GCR), Autonomy Index (AIx), Multi-Step Task Resilience (MTR), and Business Impact Efficiency (BIE). Through a large-scale simulated experiment involving four distinct agent architectures (ReAct, Chain-of-Thought, Tool-Augmented, Hybrid) across five diverse domains (Healthcare, Finance, Marketing, Legal, and Customer Service), we demonstrate the framework's efficacy. Our results reveal significant performance trade-offs between different agent designs, highlighting the Hybrid Agent as the most consistently high-performing model across the majority of our proposed metrics, achieving an average Goal Completion Rate of 88.8\% and the highest Return on Investment (ROI). This work provides a robust, standardized methodology for the holistic evaluation of AI agents, paving the way for more effective development, deployment, and governance.