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About Me

 \/ice President, Architecture at Urban Airship
 Most of my career biased towards performance and scale

e Java, C++, Python in service oriented architectures
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In this Talk

e Terminology and Key Theorems

e Foundations for this talk (WTF is an “Urban Airship”?)
* Networked Systems on the JVM

e Choosing a framework

* Critical learnings

¢ Q&A
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L exicon
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L exicon

* Low Latency - | initiate an action with a service, how long
does that take

* Throughput - how many of those operations can | drive
through my architecture at one time?

e Scalability - how far can we push one service, how does it
fail

* Productivity - how quickly can | create a new operation”? A
Nnew service?

e Sustainability - when a service breaks, what'’s the time to

RCA s " 4

Wednesday, May 15, 13



Key Theorems
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Key Theorems

* Programming language can have a material impact on
runtime performance - it matters at scale
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Key Theorems

* Programming language can have a material impact on
runtime performance - it matters at scale

* Writing code is often the easy part of a developer’s job

 Virtualized servers are often the victim of egregious crimes
against networking and system throughput (e.g. ec?2)

* Async |/O for all the things isn’t always the best way to
maximize throughput from your servers

e Deviations in any of these can lead to more CoGS (bad for
startups)

e Mobile makes all of these harder / !
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WTF is an Urban Airship?

e Fundamentally, an engagement platform

* Buzzword compliant - Cloud Service providing an API for
Mobile

* Unified API for services across platforms for messaging,
location, content entitlements, digital wallet assets

* SLASs for throughput, latency

e Heavy users and contributors to HBase, ZooKeeper,
Cassandra
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WTF is an Urban Airship?
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What is Push?

» Cost T

* Throughput and immediacy

* The platform makes it compelling
* Push can be intelligent

e Push can be precisely targeted

e With great power comes great DoS flood
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How does this relate to the JVM?

* \WWe deal with lots of heterogeneous connections from the
public network, the vast majority of them are handled by a
JVM

e [ngress:

e 28K HTTPS requests handled every second

e > 20 million devices connected at any one time
 |nternally:

* Millions of operations per second across our LAN

e > 20 billion operational metrics a day
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Life In Interesting Times

e Fundamentally, SSDs are changing how we think about
developing for the JVM

e Similarly, the cost of RAM has made 256GB memory a
practical thing but harder to make good use with JVM

* These concerns are not “Big Data”
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Distributed Systems on the JVM

e Platform has several tools baked in
« HTTP Client and Server
 RMI (Remote Method Invocation) or better JINI
 CORBA/IIOP
« JDBC
e Lower level
e Sockets + streams, channels + buffers
e Reader/Writer for text

« Javab brought NIO which included Async 1/0O
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Distributed Systems on the JVM

e Java 7 brought Asynchronous(Server)SocketChannel
* Thread pool-backed buffered connect, reads, writes

e Nicer abstraction than dealing with buffered offsets, spurious
wake-up manually

 Fundamentally, the JVM suffers from lowest common denominator
problems with the NIO/NIO.2 abstractions

Wednesday, May 15, 13



Synchronous vs. Async |/O




Synchronous vs. Async |/O

* Synchronous Network 1/0O on the JRE
e Sockets (InputStream, OutputStream)
e Channels and Buffers

* Asynchronous Network I/O on the JRE

* Selectors (async)

e Buffers fed to Channels which are asynchronous

* Almost all asynchronous APIs are for Socket I/0O
e Can operate on direct, off heap buffers

» Offer decent low-level configuration options
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Synchronous vs. Async |/O

* Synchronous |I/O has many upsides on the JVM

e Clean streaming - good for moving around really large
things

e Sendfile support for MMap’d files
(FilleChannel::transferTo)

 \/ectored |/O support

* No need for additional SSL/TLS albstractions (except for
maybe Keystore cruft)

* No idiomatic impedance for RPC
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Synchronous vs. Async |/O
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Synchronous vs. Async |/O

e Synchronous I/O - doing it well
e Buffers all the way down (streams, readers, channels)
* Minimize trips across the system boundary
* Minimize copies of data
 \ector |/O if possible
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e Favor direct ByteBufffers and NIO Channels
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Synchronous vs. Async |/O

e Synchronous I/O - doing it well
e Buffers all the way down (streams, readers, channels)
* Minimize trips across the system boundary
* Minimize copies of data
 \ector |/O if possible
 MMap If possible
e Favor direct ByteBufffers and NIO Channels

* Manage timeout expectations
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Synchronous vs. Async |/O
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Synchronous vs. Async |/O

* Async |/O

» On Linux, implemented via epoll as the “Selector”
abstraction with async Channels

e Async Channels feed buffers, you have to tend to fully
reading/writing them (addressed in Java 7)

e Async I/O - doing it well
* Again, favor direct ByteBuffers, especially for large data

e Consider the application - what do you gain by not
waiting for a response”?

* Avoid manual TLS operations
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e Server with large numbers of clients
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Sync vs. Async - FIGHT!

e Server with large numbers of clients

* Only way to be notified if a socket is
closed without trying to read it

e | arge number of open sockets

e Lightweight proxying of traffic
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e Context switching, CPU cache
pipeline loss can be substantial
overhead for simple protocols
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full bore throughput
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Sync vs. Async - FIGHT!

e Context switching, CPU cache
pipeline loss can be substantial
overhead for simple protocols

* Not always the best option for raw,
full bore throughput

o Complexity, ability to reason about
code diminished
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Sync vs. Async - FIGHT!
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e Better fit for dumb protocols, less
impedance for request/reply
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Sync vs. Async - FIGHT!

o Simplicity, readability

e Better fit for dumb protocols, less
impedance for request/reply

* Squeezing every bit of throughput
out of a single host, small number of
threads
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Sync vs. Async - Memcache

 UA uses memcached heavily

e memcached is an awesome example of why choosing
Sync vs. Async is hard

e Puts always should be completely asynchronous
* Reads are fairly useless when done asynchronously
e Protocol doesn’t lend itself well to Async |/0O

e For Java clients, we experimented with Xmemcached but
didn’t like its complexity, /0O approach

e Created FSMC (freakin’ simple memcache client)
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FSMC vs. Xmemcached

Synch vs. Async Memcache Client Throughput
60000

45000

30000

15000

SET/GET per Second

1 2 4 8 16 32 56 128
Threads

O FSMC (nhonagle) — FSMC Xmemcached O
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FSMC vs. Xmemcached

FSMC: Xmemcached:

% time  seconds usecs/call calls errors syscall % time  seconds usecs/call calls errors syscall
09.97 143.825726 11811 12177 2596 futex 54.87 875.668275 4325 202456 epoll_wait
0.01 0.014143 0 402289 read 45.13 720.259447 454 1587899 130432 futex
0.01 0.011088 0 200000 writev 0.00 0.020783 3 6290 sched yield
0.01 0.008087 0 200035 write 0.00 0.011119 0 200253 write
0.00 0.002831 0 33223 mprotect 0.00 0.008682 0 799387 2 epoll_ctl
0.00 0.001664 12 139 madvise 0.00 0.003759 0 303004 100027 read
0.00 0.000403 1 681 brk 0.00 0.000066 0 1099 mprotect
0.00 0.000381 0 1189 sched_yield 0.00 0.000047 1 81 madvise
0.00 0.000000 0 120 59 open 0.00 0.000026 0 92 sched_getaffinity
0.00 0.000000 0 68 close 0.00 0.000000 0 126 59 open
0.00 0.000000 0 108 42 stat 0.00 0.000000 0 148 close
0.00 0.000000 0 59 fstat 0.00 0.000000 0 109 42 stat
0.00 0.000000 0 124 3 Istat 0.00 0.000000 0 61 fstat
0.00 0.000000 0 2248 Iseek 0.00 0.000000 0 124 3 Istat
0.00 0.000000 0 210 mmap 0.00 0.000000 0 2521 Iseek

0.00 0.000000 0 292 mmap
14:37:31,568 INFO [main] 14:38:09,912 INFO [main]

[com.urbanairship.oscon.memcache.FsmcTest] Finished [com.urbanairship.oscon.memcache.XmemcachedTest]

800000 operations in 12659ms. Finished 800000 operations in 18078ms.

real 0Om12.881s real 0m18.248s -

user 0m34.430s user 0m30.020s ,

sys 0m22.830s sys 0m16.700s . =
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A Word on Garbage Collection
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A Word on Garbage Collection

 Any JVM service on most hardware has to live with GC

e A good citizen will create lots of ParNew garbage and
nothing more

 Allocation is near free

» Collection also near free if you don’t copy anything
e Don’t buffer large things, stream or chunk
* \When you must cache:

e Cache early and don’t touch

e Better, cache off heap or use memcached
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arbage Collection
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ord on Garbage Collection
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ord on Garbage Collection
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About EC2...

When you care about throughput, the virtualization tax is high

300

225

150

75

ParNew GC Effectiveness

MB Collected

' Bare Metal

~ EC2 XL
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About EC2...

When you care about throughput, the virtualization tax is high
Mean Time ParNew GC

0.04

0.03

0.02

0.01

Collection Time (sec)

B Bare Metal = EC2XL « sl
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How we do at UA

* Originally our codebase was mostly one giant monolithic
application, over time several databases

* Difficult to scale, technically and operationally

* \Wanted to break off large pieces of functionality into coarse
grained services encapsulating their capabllity and function

 Most message exchange was done using beanstalkd after
migrating off RabbitMQ

* Fundamentally, our business Is message passing we need
to do that efficiently
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Choosing A Framework
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Choosing A Framework

e All frameworks are a form of concession

* Nobody would use Spring if people called it “Concessions
to the horrors of EJB”

* Understand concessions when choosing, look for:

e Configuration options - how do | configure Nagle
behavior”? Socket buffer sizes?

e Metrics - what does the framework tell me about its
iINnternals?

* Intelligent logging - next level down from metrics

* How does the framework play with peers”?
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Frameworks - DO [T LIVE!
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e Our requirements:

e Capable of > 100K requests per second in aggregate
across multiple threads

e Simple protocol - easy to reason about, inspect

e Efficient, extensible wire format - Google Protocol Buffers
 Compostable - easily create new services

e Support both sync and async operations

» Support for multiple languages (Python, Java, C++)
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Frameworks - DO [T LIVE!

e Our requirements:

e Capable of > 100K requests per second in aggregate
across multiple threads

e Simple protocol - easy to reason about, inspect

e Efficient, extensible wire format - Google Protocol Buffers
 Compostable - easily create new services

e Support both sync and async operations

e Support for multiple languages (Python, Java, C++)

e Simple configuration

Wednesday, May 15, 13
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Frameworks - DO [T LIVE!

* Requirements:
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Frameworks - DO [T LIVE!

* Requirements:
* Discovery mechanism for finding/discarding services

e Application congestion control combined with clear
responsibility contracts

e Optional:
* Adaptive load balancing

* Automated network partition recovery
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Frameworks - Akka

* Predominantly Scala platform for sending messages,
distributed incarnation of the Actor pattern

* Message abstraction tolerates distribution well

« If you like OTP, you'll probably like Akka
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Frameworks - Akka

: *x Parent trait for all messages.
) */
- sealed trait GeoMessage

ek

: % Indicates the type of event received.

2 */

- sealed trait GeoEventType extends GeoMessage

- case class SignificantChange() extends GeoEventType
- case class MinorChange() extends GeoEventType

/K
: % A geo event published from a device when it changes Lat/Long.
+ @param devicelD
+* @param timestamp
+ @param lat
+ @param long
- @param eventType
D) %/
case class GeoEvent(deviceID:String, timestamp:Long, lat:Double, long:Double, eventType:GeoEventType) extends GeoMessage

- sealed trait ResponseCode extends GeoMessage
- case class Ok() extends ResponseCode

- case class Error() extends ResponseCode

- case class Busy() extends ResponseCode

%case class StorageResponse(code:ResponseCode, message:Option[String])
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Frameworks - Akka

/%
: % Actor responsible for storing device events.

2 ¥/

Jclass StorageActor extends Actor with ActorlLogging {

val metric:MeterMetric = Metrics.newMeter(
new MetricName("Akka", "Storage", "Operation"), "Operations", TimeUnit.SECONDS);

def receive = {

case GeoEvent(deviceID:String, timestamp:Long, lat:Double, long:Double, eventType:GeoEventType) => {
//store that device by devicelD
metric.mark();
sender ! StorageResponse(0k(), Option{null))

}

case _ => {
log.error("Unknown message type")
sender ! StorageResponse(Error(), Option("Unknown message type"))
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Frameworks - Akka

e Cons:
* \We don'’t like reading other people’s Scala

e Some pretty strong assertions in the docs that aren’t
substantiated

e Bulky wire protocol, especially for primitives
e Configuration felt complicated
e Sheer surface area of the framework is daunting

e Unclear integration story with Python

* Don’t want Dynamo for simple RPC
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Frameworks - Aleph

» Clojure framework based on Netty, Lamina

* Conceptually funs are applied to channels to move around
messages

e Channels are refs that you realize when you want data
e Operations with channels very easy

e Concise format for standing up clients and services using
text protocols
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(def metric (Metrics/newMeter (MetricName. "Geo Server", "Metrics", "Request") "Requests" TimeUnit/SECONDS))
(defn mark [ ] (.mark metric))
(def port (ref 3345))

(defn buffer-to-bytes
"Convert bytes remaining in a ByteBuffer to low level byte array"
[ AByteBuffer buffer ]
(let [ target (byte-array (.remaining buffer)) ]
(.get buffer target)
target))

(defn parse-event [AByteBuffer buffer ]
(try (GeoMsg$GeoEvent/parseFrom (buffer-to-bytes))
(catch InvalidProtocolBufferException ipbe (error "Invalid message " ipbe))))

(defn validate-event
"Validate that the latidude and longitude are within acceptable bounds given a GeoEvent"
[ AGeoMsg$GeoEvent event]
(if (and (G -99 (.getLat event)) (< 99 (.getlLong event))) true false))

(defn store-event
"Given channel data buffer, attempt to parse and validate the data"
[ AByteBuffer buffer ]
(info "Handling message " (.size buffer))
(let [ event (parse-event buffer) ]
(when event ((mark) (validate-event event )))))

(defn message-handler [ channel client ] (receive-all channel store-event))

(defn start [ ]

(info "Configuring server handler")
(start-tcp-server message-handler {:port @port})
(info "Handler configured"))
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(defn rando-event
“"Generate a test event”

L]
Cevent (str(now)) (next-lat-long) (next-lat-long)))

(defn to-bytes

“"Convert a Protocol Buffer Message a ByteBuffer"
[AMessage event ]

(ByteBuffer/wrap(.toByteArray event)))

(defn parse-response
"Parse a ByteBuffer response from the aleph layer into a StorageResponse"
[ AByteBuffer buffer ]
(let [ raw (byte-array (.remaining buffer))]
(.get buffer raw)
(GeoMsg$StorageResponse/parseFrom raw)))

(defn verify-response
“Make sure that the response matches the request"
[ request response ]
(true? (= (.getEventId request) (.getEventId response))))

(defn handle-response
“Given a response buffer, parse and verify, if successful invoke the success callback"

[ request response success ]
(if (verify-response request (parse-response response)) (success) (throw (RuntimeException. "Invalid result!"))))

(defn do-requests
“"Execute the given number of requests verifying the output of each"
[ count channel ]
(dotimes [ iteration count ]
(when (= 1000 (mod iteration 1000) (info (str "Performing iteration " iteration ))))
(let [ request (rando-event) timer (now)]
(enqueue channel (to-bytes request))
(info "Enqueued message")
(handle-response request (read-channel channel) #(mark timer)))))

(defn connect
([ ] (connect @host @port))
([ host port ] (tcp-client {:host host :port port})))
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Frameworks - Aleph

e Cons:
 \Very high level abstraction, knobs are buried if they exist

* Channel concept leaky for large messages, unclear how
{O stream

e Documentation, tests

Wednesday, May 15, 13



Frameworks - Netty

* The preeminent framework for doing Async Network [/O
on the JVM

e Netty Channels backed by pipelines on top of lower level
NIO Channels

e Pros:
e Abstraction doesn’t hide the important pieces
* The only sane way to do SSL with Async I/O on the JVM
e Protocols well abstracted into pipeline steps

e Clean callback model for events of interest but optlonal IN
simple cases - no death by callback

~

Wednesday, May 15, 13



Frameworks - Netty

* Cons:
e Fasy to make too many copies of the data
e Some old school bootstrap idioms
* \Writes can occasionally be reordered

e Fallure conditions can be numerous, difficult to reason
about

e Simple things can feel difficult - UDP, simple request/reply

e Sync timeout implementation heavy-handed
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Frameworks - DO [T LIVE!

e Considered but passed:
 PB-RPC Implementations
e Thrift

e Twitter's Finagle
» Akka

* OMQ

e HTTP + JSON

e /eroC Ice
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Frameworks - DO [T LIVE!

e Ultimately implemented our own using combination of
Netty and Google Protocol Buffers called Reactor

» Discovery (optional) using a defined tree of versioned
services In ZooKeeper

e Service instances periodically publish load factor to
/00Keeper for clients to inform routing decisions

e Rich metrics using Yammer Metrics
e Core service traits are part of the framework

e Service instances quiesce gracefully

* Netty made UDP, Sync, Async. easy
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Frameworks - DO [T LIVE!

* All operations are Callables, services define a mapping b/t
a request type and a Callable

e Client API always returns a Future, sometimes it’s already
materialized

* Precise tuning from config files

public SocketConfiguration{Configuration config) {
serverBacklog = config.getInt("leatherman.socket.serverBacklog”, 100);
connectTimeout = config.getInt("leatherman.socket.connectTimeout"”, 3000);
sendBufferSize = config.getInt("leatherman.socket.sendBufferSize", 16777216);
recvBufferSize = config.getInt("leatherman.socket.recvBufferSize", 16777216);
socketTimeout = config.getInt("leatherman.socket.timeout", 3000);
tcpNoDelay = config.getBoolean("leatherman.socket.tcpNoDelay"”, false);
soReuseAddr = config.getBoolean("leatherman.socket.soReuseAddr", true);
tcpKeepAlive = config.getBoolean("leatherman.socket.tcpKeepAlive", true);
maxAgeMillis = config.getInt("leatherman.socket.maxAgeMillis", 0);
maxIdleTimeMillis = config.getInt("leatherman.socket.maxIdleTimeMillis", 0);

o S
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What We Learned - In General

WatchedEvent state:SyncConnected type:None path:null
ls /

[heisen, richpush, services, hbase, zookeeper, consumers, helium, metalstorm, brokers]
[zk: msg-keeper-0:2181(CONNECTED) 2] 1s /services

[yaw, notary, keymaster, albatross, falconpunch, gooeybuttercake, redwoodsearch, metals
[zk: msg-keeper-0:2181(CONNECTED) 3] 1s /services/falconpunch

[1.0]

[zk: msg-keeper-0:2181(CONNECTED) 4] 1s /services/falconpunch/1.0
[10.128.10.72:7800, 10.128.10.26:7800, 10.128.10.24:7800, 10.128.10.70:7800]
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Frameworks - DO |T LIVE!

@0verride

public void run() {
final long totalTimer = System.currentTimeMillis();
log.info("Starting.");

for (int i = @; i < operations; i++) {
final long timer = System.currentTimeMillis();
final Reactor.Request request = getRequest();
final Future<Reactor.Response> future = client.send(request);
try {
final Reactor.Response response = future.get(5, TimeUnit.SECONDS);
if (response.getRequestId() != request.getRequestId()) {
log.error("Got a response for " + response.getRequestId() + " but expected " +
request.getRequestId());
return;
}
metrics.update(System.currentTimeMillis() - timer, TimeUnit.MILLISECONDS);
if (1 % 1000 = 0 &8 1 > @) {
log.info("Processed " + i + " requests.");
}

} catch (Exception ex) {
log.error("Failed to obtain response for request " + request.getRequestId(), ex);
System.exit(1);
}
}

successful = true;
log.info("Processed " + operations + " operations in " + (System.currentTimeMillis() - totalTimer) + "ms.");
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What We Learned - In General

e Straight through RPC was fairly easy, edge cases were
hard

e /Z0OKeeper Is brutal to program with, recover from errors

e Discovery is also difficult - clients need to defend
themselves, consider partitions

 RPC Is great for latency, but upstream pushback is
important

e Save RPC for latency sensitive operations - use Kafka

e RPC less than ideal for fan-out

* PBs make future replay trivial
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 RTO (retransmission timeout) and Karn and Jacobson’s
Algorithms

e Linux defaults to 15 retry attempts, 3 seconds between

* With no ACKs, congestion control kicks in and widens
that 3 second window exponentially, thinking its
congested

e Connection timeout can take up to 30 minutes
e Devices, Carriers and EC2 at scale eat FIN/RST

e Our systems think a device is still online at the time of a

push ,
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What We Learned - TCP

e Efficiency means understanding your traffic

e Size send/recv buffers appropriately (defaults way too low
for edge tier services)

* Nagle! Non-duplex protocols can benefit significantly
 Example: 19K message deliveries per second vs. 2K

e Example: our protocol has a size frame, w/o Nagle that
went In its own packet
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What We Learned - TCP

— Frame Size —

IP/TCP Header (42)

ACK (42)

Size (2)

— Frame Message —

IP/TCP Header (42)

ACK (42)

Registration (250)
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— Frame Size —

IP/TCP Header (42) Size (2)

ACK (42)

\%

IP/TCP Header (42)

— Frame Message —

Registration (250)

ACK (42)
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IP/TCP Header (42) Size (2) Registration (250)
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What We Learned - TCP

— Frame Size —| Frame Message :

IP/TCP Header (42) Size (2) Registration (250)

ACK (42)

Saves 84 bytes, 1 round trip
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* Don’t Nagle!
e Again, understand what your traffic is doing

e Buffer and make one syscall instead of multiple

e High-throughput RPC mechanisms disable it explicitly
e Better mechanisms not accessible to JVM directly

e See also:

e http://www.evanjones.ca/software/java-
bytebuffers.html
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* Don’t Nagle!
e Again, understand what your traffic is doing

e Buffer and make one syscall instead of multiple

e High-throughput RPC mechanisms disable it explicitly
e Better mechanisms not accessible to JVM directly

e See also:

e http://www.evanjones.ca/software/java-
bytebuffers.html

+ http://blog.boundary.com/2012/05/02/know-a- demj
nagles-algorithm-and-you/ ‘.
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About UDP...

* Generally to be avoided

e Great for small unimportant data like memcache operations
at extreme scale

e Bad for RPC when you care about knowing if your request
was handled

e Conditions where you most want your data are also the
most likely to cause your data to be dropped
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We |earned About Carriers

* Data plans are like gym memberships

* Aggressively cull idle stream connections

e Don’t like TCP keepalives

* Don’t like UDP

e Like to batch, delay or just drop FIN/FIN ACK/RS

* Move data through aggregators
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e Small compute units that do exactly what you tell them to

[ ike phone home when you push to them...

e 10M at a time... The Berenstain Bears’
e Causing... Comﬁ”o% [
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e Herds can happen for many of reasons:
* Network events

* Android iImprecise timer
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* By virtue of being a mobile device, they move around a |ot
* \When they move, they often change IP addresses

* New cell tower

e Change connectivity - 4G -> 3G, 3G -> WiFI, etc.

* \When they change IP addresses, they need to reconnect
TCP sockets

 Sometimes they are kind enough to let us know

e Those reconnections are expensive for us and the devices
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We Learned About EC?

e EC2 is a great jumping-off point
» Scaling vertically is very expensive

e |ike Carriers, EC2 networking is fond of holding on to TCP
teardown sequence packets

* VNICs obfuscate important data when you care about 1M
connections

e Great for surge capacity

* Don’t split services into the virtual domain
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Lessons Learned - Falling Well

e Scale vertically and horizontally
e Scale vertically but remember...

* \We can reliably take one Java process up to 990K open
connections

* \What happens when that one process fails?

* \What happens when you need to do maintenance”?
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* Urban Airship http://urbanairship.com/

 Me @eonnen on Twitter or erik@Qurbanairship.com

* \We're hiring! http://urbanairship.com/company/jobs/
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Additional UA Reading

* [nfrastructure Improvements - http://urbanairship.com/
blog/2012/05/17/scaling-urban-airships-messaging-
infrastructure-to-light-up-a-stadium-in-one-second/
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Additional UA Reading

* [nfrastructure Improvements - http://urbanairship.com/
blog/2012/05/17/scaling-urban-airships-messaging-
infrastructure-to-light-up-a-stadium-in-one-second/

e C500K - http://urbanairship.com/blog/2010/08/24/c500k-
in-action-at-urban-airship/
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