
High Performance
Network Programming on the JVM
GeeCON, May 2013
Erik Onnen

Wednesday, May 15, 13

About Me

Wednesday, May 15, 13

About Me

• Vice President, Architecture at Urban Airship
• Most of my career biased towards performance and scale
• Java, C++, Python in service oriented architectures

Wednesday, May 15, 13

In this Talk

• Terminology and Key Theorems
• Foundations for this talk (WTF is an “Urban Airship”?)
• Networked Systems on the JVM
• Choosing a framework
• Critical learnings
• Q&A

Wednesday, May 15, 13

Lexicon

What makes something “High Performance”?

Wednesday, May 15, 13

Lexicon

• Low Latency - I initiate an action with a service, how long
does that take

• Throughput - how many of those operations can I drive
through my architecture at one time?

• Scalability - how far can we push one service, how does it
fail

• Productivity - how quickly can I create a new operation? A
new service?

• Sustainability - when a service breaks, what’s the time to
RCA

What makes something “High Performance”?

Wednesday, May 15, 13

Key Theorems

Wednesday, May 15, 13

Key Theorems

• Programming language can have a material impact on
runtime performance - it matters at scale

Wednesday, May 15, 13

Key Theorems

• Programming language can have a material impact on
runtime performance - it matters at scale

• Writing code is often the easy part of a developer’s job

Wednesday, May 15, 13

Key Theorems

• Programming language can have a material impact on
runtime performance - it matters at scale

• Writing code is often the easy part of a developer’s job
• Virtualized servers are often the victim of egregious crimes

against networking and system throughput (e.g. ec2)

Wednesday, May 15, 13

Key Theorems

• Programming language can have a material impact on
runtime performance - it matters at scale

• Writing code is often the easy part of a developer’s job
• Virtualized servers are often the victim of egregious crimes

against networking and system throughput (e.g. ec2)
• Async I/O for all the things isn’t always the best way to

maximize throughput from your servers

Wednesday, May 15, 13

Key Theorems

• Programming language can have a material impact on
runtime performance - it matters at scale

• Writing code is often the easy part of a developer’s job
• Virtualized servers are often the victim of egregious crimes

against networking and system throughput (e.g. ec2)
• Async I/O for all the things isn’t always the best way to

maximize throughput from your servers
• Deviations in any of these can lead to more CoGS (bad for

startups)

Wednesday, May 15, 13

Key Theorems

• Programming language can have a material impact on
runtime performance - it matters at scale

• Writing code is often the easy part of a developer’s job
• Virtualized servers are often the victim of egregious crimes

against networking and system throughput (e.g. ec2)
• Async I/O for all the things isn’t always the best way to

maximize throughput from your servers
• Deviations in any of these can lead to more CoGS (bad for

startups)
• Mobile makes all of these harder

Wednesday, May 15, 13

WTF is an Urban Airship?

• Fundamentally, an engagement platform
• Buzzword compliant - Cloud Service providing an API for

Mobile
• Unified API for services across platforms for messaging,

location, content entitlements, digital wallet assets
• SLAs for throughput, latency
• Heavy users and contributors to HBase, ZooKeeper,

Cassandra

Wednesday, May 15, 13

WTF is an Urban Airship?

Wednesday, May 15, 13

What is Push?

• Cost
• Throughput and immediacy
• The platform makes it compelling

• Push can be intelligent
• Push can be precisely targeted

• With great power comes great DoS flood

Wednesday, May 15, 13

How does this relate to the JVM?

• We deal with lots of heterogeneous connections from the
public network, the vast majority of them are handled by a
JVM

• Ingress:
• 28K HTTPS requests handled every second
• > 20 million devices connected at any one time

• Internally:
• Millions of operations per second across our LAN
• > 20 billion operational metrics a day

Wednesday, May 15, 13

Life in Interesting Times

• Fundamentally, SSDs are changing how we think about
developing for the JVM

• Similarly, the cost of RAM has made 256GB memory a
practical thing but harder to make good use with JVM

• These concerns are not “Big Data”

Wednesday, May 15, 13

Distributed Systems on the JVM

• Platform has several tools baked in

• HTTP Client and Server

• RMI (Remote Method Invocation) or better JINI

• CORBA/IIOP

• JDBC

• Lower level

• Sockets + streams, channels + buffers

• Reader/Writer for text

• Java5 brought NIO which included Async I/O

Wednesday, May 15, 13

Distributed Systems on the JVM
• Java 7 brought Asynchronous(Server)SocketChannel

• Thread pool-backed buffered connect, reads, writes

• Nicer abstraction than dealing with buffered offsets, spurious
wake-up manually

• Fundamentally, the JVM suffers from lowest common denominator
problems with the NIO/NIO.2 abstractions

Wednesday, May 15, 13

Synchronous vs. Async I/O

Wednesday, May 15, 13

Synchronous vs. Async I/O
• Synchronous Network I/O on the JRE

• Sockets (InputStream, OutputStream)
• Channels and Buffers

• Asynchronous Network I/O on the JRE
• Selectors (async)
• Buffers fed to Channels which are asynchronous
• Almost all asynchronous APIs are for Socket I/O

• Can operate on direct, off heap buffers
• Offer decent low-level configuration options

Wednesday, May 15, 13

Synchronous vs. Async I/O

• Synchronous I/O has many upsides on the JVM
• Clean streaming - good for moving around really large

things
• Sendfile support for MMap’d files

(FileChannel::transferTo)
• Vectored I/O support
• No need for additional SSL/TLS abstractions (except for

maybe Keystore cruft)
• No idiomatic impedance for RPC

Wednesday, May 15, 13

Synchronous vs. Async I/O

Wednesday, May 15, 13

Synchronous vs. Async I/O
• Synchronous I/O - doing it well

Wednesday, May 15, 13

Synchronous vs. Async I/O
• Synchronous I/O - doing it well

• Buffers all the way down (streams, readers, channels)

Wednesday, May 15, 13

Synchronous vs. Async I/O
• Synchronous I/O - doing it well

• Buffers all the way down (streams, readers, channels)
• Minimize trips across the system boundary

Wednesday, May 15, 13

Synchronous vs. Async I/O
• Synchronous I/O - doing it well

• Buffers all the way down (streams, readers, channels)
• Minimize trips across the system boundary
• Minimize copies of data

Wednesday, May 15, 13

Synchronous vs. Async I/O
• Synchronous I/O - doing it well

• Buffers all the way down (streams, readers, channels)
• Minimize trips across the system boundary
• Minimize copies of data
• Vector I/O if possible

Wednesday, May 15, 13

Synchronous vs. Async I/O
• Synchronous I/O - doing it well

• Buffers all the way down (streams, readers, channels)
• Minimize trips across the system boundary
• Minimize copies of data
• Vector I/O if possible
• MMap if possible

Wednesday, May 15, 13

Synchronous vs. Async I/O
• Synchronous I/O - doing it well

• Buffers all the way down (streams, readers, channels)
• Minimize trips across the system boundary
• Minimize copies of data
• Vector I/O if possible
• MMap if possible

• Favor direct ByteBufffers and NIO Channels

Wednesday, May 15, 13

Synchronous vs. Async I/O
• Synchronous I/O - doing it well

• Buffers all the way down (streams, readers, channels)
• Minimize trips across the system boundary
• Minimize copies of data
• Vector I/O if possible
• MMap if possible

• Favor direct ByteBufffers and NIO Channels
• Manage timeout expectations

Wednesday, May 15, 13

Synchronous vs. Async I/O

Wednesday, May 15, 13

Synchronous vs. Async I/O
• Async I/O

• On Linux, implemented via epoll as the “Selector”
abstraction with async Channels

• Async Channels feed buffers, you have to tend to fully
reading/writing them (addressed in Java 7)

• Async I/O - doing it well
• Again, favor direct ByteBuffers, especially for large data
• Consider the application - what do you gain by not

waiting for a response?
• Avoid manual TLS operations

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

Async I/O Wins:

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

• Server with large numbers of clients

Async I/O Wins:

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

• Server with large numbers of clients
• Only way to be notified if a socket is

closed without trying to read it

Async I/O Wins:

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

• Server with large numbers of clients
• Only way to be notified if a socket is

closed without trying to read it
• Large number of open sockets

Async I/O Wins:

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

• Server with large numbers of clients
• Only way to be notified if a socket is

closed without trying to read it
• Large number of open sockets
• Lightweight proxying of traffic

Async I/O Wins:

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

Async I/O Loses:

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

• Context switching, CPU cache
pipeline loss can be substantial
overhead for simple protocols

Async I/O Loses:

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

• Context switching, CPU cache
pipeline loss can be substantial
overhead for simple protocols

• Not always the best option for raw,
full bore throughput

Async I/O Loses:

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

• Context switching, CPU cache
pipeline loss can be substantial
overhead for simple protocols

• Not always the best option for raw,
full bore throughput

• Complexity, ability to reason about
code diminished

Async I/O Loses:

Wednesday, May 15, 13

Sync vs. Async - FIGHT!
Async I/O Loses:

http://www.youtube.com/watch?v=bzkRVzciAZg&feature=player_detailpage#t=133s

Wednesday, May 15, 13

http://www.youtube.com/watch?v=bzkRVzciAZg&feature=player_detailpage#t=133s
http://www.youtube.com/watch?v=bzkRVzciAZg&feature=player_detailpage#t=133s

Sync vs. Async - FIGHT!

Sync I/O Wins:

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

• Simplicity, readability

Sync I/O Wins:

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

• Simplicity, readability
• Better fit for dumb protocols, less

impedance for request/reply

Sync I/O Wins:

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

• Simplicity, readability
• Better fit for dumb protocols, less

impedance for request/reply
• Squeezing every bit of throughput

out of a single host, small number of
threads

Sync I/O Wins:

Wednesday, May 15, 13

Sync vs. Async - Memcache

• UA uses memcached heavily
• memcached is an awesome example of why choosing

Sync vs. Async is hard
• Puts always should be completely asynchronous
• Reads are fairly useless when done asynchronously
• Protocol doesn’t lend itself well to Async I/O
• For Java clients, we experimented with Xmemcached but

didn’t like its complexity, I/O approach
• Created FSMC (freakin’ simple memcache client)

Wednesday, May 15, 13

FSMC vs. Xmemcached

0

15000

30000

45000

60000

1 2 4 8 16 32 56 128

Synch vs. Async Memcache Client Throughput

SE
T/

G
ET

 p
er

 S
ec

on
d

Threads

FSMC (no nagle) FSMC Xmemcached
Wednesday, May 15, 13

FSMC vs. Xmemcached
FSMC:
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 99.97 143.825726 11811 12177 2596 futex
 0.01 0.014143 0 402289 read
 0.01 0.011088 0 200000 writev
 0.01 0.008087 0 200035 write
 0.00 0.002831 0 33223 mprotect
 0.00 0.001664 12 139 madvise
 0.00 0.000403 1 681 brk
 0.00 0.000381 0 1189 sched_yield
 0.00 0.000000 0 120 59 open
 0.00 0.000000 0 68 close
 0.00 0.000000 0 108 42 stat
 0.00 0.000000 0 59 fstat
 0.00 0.000000 0 124 3 lstat
 0.00 0.000000 0 2248 lseek
 0.00 0.000000 0 210 mmap

14:37:31,568 INFO [main]
[com.urbanairship.oscon.memcache.FsmcTest] Finished
800000 operations in 12659ms.

real 0m12.881s
user 0m34.430s
sys 0m22.830s

Xmemcached:
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 54.87 875.668275 4325 202456 epoll_wait
 45.13 720.259447 454 1587899 130432 futex
 0.00 0.020783 3 6290 sched_yield
 0.00 0.011119 0 200253 write
 0.00 0.008682 0 799387 2 epoll_ctl
 0.00 0.003759 0 303004 100027 read
 0.00 0.000066 0 1099 mprotect
 0.00 0.000047 1 81 madvise
 0.00 0.000026 0 92 sched_getaffinity
 0.00 0.000000 0 126 59 open
 0.00 0.000000 0 148 close
 0.00 0.000000 0 109 42 stat
 0.00 0.000000 0 61 fstat
 0.00 0.000000 0 124 3 lstat
 0.00 0.000000 0 2521 lseek
 0.00 0.000000 0 292 mmap

14:38:09,912 INFO [main]
[com.urbanairship.oscon.memcache.XmemcachedTest]
Finished 800000 operations in 18078ms.

real 0m18.248s
user 0m30.020s
sys 0m16.700s

Wednesday, May 15, 13

A Word on Garbage Collection

Wednesday, May 15, 13

A Word on Garbage Collection

• Any JVM service on most hardware has to live with GC

Wednesday, May 15, 13

A Word on Garbage Collection

• Any JVM service on most hardware has to live with GC
• A good citizen will create lots of ParNew garbage and

nothing more

Wednesday, May 15, 13

A Word on Garbage Collection

• Any JVM service on most hardware has to live with GC
• A good citizen will create lots of ParNew garbage and

nothing more
• Allocation is near free

Wednesday, May 15, 13

A Word on Garbage Collection

• Any JVM service on most hardware has to live with GC
• A good citizen will create lots of ParNew garbage and

nothing more
• Allocation is near free
• Collection also near free if you don’t copy anything

Wednesday, May 15, 13

A Word on Garbage Collection

• Any JVM service on most hardware has to live with GC
• A good citizen will create lots of ParNew garbage and

nothing more
• Allocation is near free
• Collection also near free if you don’t copy anything

• Don’t buffer large things, stream or chunk

Wednesday, May 15, 13

A Word on Garbage Collection

• Any JVM service on most hardware has to live with GC
• A good citizen will create lots of ParNew garbage and

nothing more
• Allocation is near free
• Collection also near free if you don’t copy anything

• Don’t buffer large things, stream or chunk
• When you must cache:

Wednesday, May 15, 13

A Word on Garbage Collection

• Any JVM service on most hardware has to live with GC
• A good citizen will create lots of ParNew garbage and

nothing more
• Allocation is near free
• Collection also near free if you don’t copy anything

• Don’t buffer large things, stream or chunk
• When you must cache:

• Cache early and don’t touch

Wednesday, May 15, 13

A Word on Garbage Collection

• Any JVM service on most hardware has to live with GC
• A good citizen will create lots of ParNew garbage and

nothing more
• Allocation is near free
• Collection also near free if you don’t copy anything

• Don’t buffer large things, stream or chunk
• When you must cache:

• Cache early and don’t touch
• Better, cache off heap or use memcached

Wednesday, May 15, 13

A Word on Garbage Collection

Wednesday, May 15, 13

A Word on Garbage Collection

GOOD

Wednesday, May 15, 13

A Word on Garbage Collection

GOOD

BAD

Wednesday, May 15, 13

About EC2...

When you care about throughput, the virtualization tax is high

0

75

150

225

300

MB Collected

ParNew GC Effectiveness

Bare Metal EC2 XL

Wednesday, May 15, 13

About EC2...

When you care about throughput, the virtualization tax is high

0

0.01

0.02

0.03

0.04

Collection Time (sec)

Mean Time ParNew GC

Bare Metal EC2 XL
Wednesday, May 15, 13

How we do at UA

• Originally our codebase was mostly one giant monolithic
application, over time several databases

• Difficult to scale, technically and operationally
• Wanted to break off large pieces of functionality into coarse

grained services encapsulating their capability and function
• Most message exchange was done using beanstalkd after

migrating off RabbitMQ
• Fundamentally, our business is message passing we need

to do that efficiently

Wednesday, May 15, 13

Choosing A Framework

Wednesday, May 15, 13

Choosing A Framework

• All frameworks are a form of concession

Wednesday, May 15, 13

Choosing A Framework

• All frameworks are a form of concession
• Nobody would use Spring if people called it “Concessions

to the horrors of EJB”

Wednesday, May 15, 13

Choosing A Framework

• All frameworks are a form of concession
• Nobody would use Spring if people called it “Concessions

to the horrors of EJB”
• Understand concessions when choosing, look for:

Wednesday, May 15, 13

Choosing A Framework

• All frameworks are a form of concession
• Nobody would use Spring if people called it “Concessions

to the horrors of EJB”
• Understand concessions when choosing, look for:

• Configuration options - how do I configure Nagle
behavior? Socket buffer sizes?

Wednesday, May 15, 13

Choosing A Framework

• All frameworks are a form of concession
• Nobody would use Spring if people called it “Concessions

to the horrors of EJB”
• Understand concessions when choosing, look for:

• Configuration options - how do I configure Nagle
behavior? Socket buffer sizes?

• Metrics - what does the framework tell me about its
internals?

Wednesday, May 15, 13

Choosing A Framework

• All frameworks are a form of concession
• Nobody would use Spring if people called it “Concessions

to the horrors of EJB”
• Understand concessions when choosing, look for:

• Configuration options - how do I configure Nagle
behavior? Socket buffer sizes?

• Metrics - what does the framework tell me about its
internals?

• Intelligent logging - next level down from metrics

Wednesday, May 15, 13

Choosing A Framework

• All frameworks are a form of concession
• Nobody would use Spring if people called it “Concessions

to the horrors of EJB”
• Understand concessions when choosing, look for:

• Configuration options - how do I configure Nagle
behavior? Socket buffer sizes?

• Metrics - what does the framework tell me about its
internals?

• Intelligent logging - next level down from metrics
• How does the framework play with peers?

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Our requirements:

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Our requirements:
• Capable of > 100K requests per second in aggregate

across multiple threads

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Our requirements:
• Capable of > 100K requests per second in aggregate

across multiple threads
• Simple protocol - easy to reason about, inspect

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Our requirements:
• Capable of > 100K requests per second in aggregate

across multiple threads
• Simple protocol - easy to reason about, inspect
• Efficient, extensible wire format - Google Protocol Buffers

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Our requirements:
• Capable of > 100K requests per second in aggregate

across multiple threads
• Simple protocol - easy to reason about, inspect
• Efficient, extensible wire format - Google Protocol Buffers
• Compostable - easily create new services

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Our requirements:
• Capable of > 100K requests per second in aggregate

across multiple threads
• Simple protocol - easy to reason about, inspect
• Efficient, extensible wire format - Google Protocol Buffers
• Compostable - easily create new services
• Support both sync and async operations

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Our requirements:
• Capable of > 100K requests per second in aggregate

across multiple threads
• Simple protocol - easy to reason about, inspect
• Efficient, extensible wire format - Google Protocol Buffers
• Compostable - easily create new services
• Support both sync and async operations
• Support for multiple languages (Python, Java, C++)

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Our requirements:
• Capable of > 100K requests per second in aggregate

across multiple threads
• Simple protocol - easy to reason about, inspect
• Efficient, extensible wire format - Google Protocol Buffers
• Compostable - easily create new services
• Support both sync and async operations
• Support for multiple languages (Python, Java, C++)
• Simple configuration

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Requirements:

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Requirements:
• Discovery mechanism for finding/discarding services

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Requirements:
• Discovery mechanism for finding/discarding services
• Application congestion control combined with clear

responsibility contracts

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Requirements:
• Discovery mechanism for finding/discarding services
• Application congestion control combined with clear

responsibility contracts
• Optional:

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Requirements:
• Discovery mechanism for finding/discarding services
• Application congestion control combined with clear

responsibility contracts
• Optional:

• Adaptive load balancing

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Requirements:
• Discovery mechanism for finding/discarding services
• Application congestion control combined with clear

responsibility contracts
• Optional:

• Adaptive load balancing
• Automated network partition recovery

Wednesday, May 15, 13

Frameworks - Akka

• Predominantly Scala platform for sending messages,
distributed incarnation of the Actor pattern

• Message abstraction tolerates distribution well
• If you like OTP, you’ll probably like Akka

Wednesday, May 15, 13

Frameworks - Akka

Wednesday, May 15, 13

Frameworks - Akka

Wednesday, May 15, 13

Frameworks - Akka

• Cons:
• We don’t like reading other people’s Scala
• Some pretty strong assertions in the docs that aren’t

substantiated
• Bulky wire protocol, especially for primitives
• Configuration felt complicated
• Sheer surface area of the framework is daunting
• Unclear integration story with Python
• Don’t want Dynamo for simple RPC

Wednesday, May 15, 13

Frameworks - Aleph

• Clojure framework based on Netty, Lamina
• Conceptually funs are applied to channels to move around

messages
• Channels are refs that you realize when you want data
• Operations with channels very easy
• Concise format for standing up clients and services using

text protocols

Wednesday, May 15, 13

Wednesday, May 15, 13

Wednesday, May 15, 13

Frameworks - Aleph

• Cons:
• Very high level abstraction, knobs are buried if they exist
• Channel concept leaky for large messages, unclear how

to stream
• Documentation, tests

Wednesday, May 15, 13

Frameworks - Netty
• The preeminent framework for doing Async Network I/O

on the JVM
• Netty Channels backed by pipelines on top of lower level

NIO Channels
• Pros:

• Abstraction doesn’t hide the important pieces
• The only sane way to do SSL with Async I/O on the JVM
• Protocols well abstracted into pipeline steps
• Clean callback model for events of interest but optional in

simple cases - no death by callback

Wednesday, May 15, 13

Frameworks - Netty

• Cons:
• Easy to make too many copies of the data
• Some old school bootstrap idioms
• Writes can occasionally be reordered
• Failure conditions can be numerous, difficult to reason

about
• Simple things can feel difficult - UDP, simple request/reply
• Sync timeout implementation heavy-handed

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Considered but passed:

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Considered but passed:
• PB-RPC Implementations

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Considered but passed:
• PB-RPC Implementations
• Thrift

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Considered but passed:
• PB-RPC Implementations
• Thrift
• Twitter’s Finagle

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Considered but passed:
• PB-RPC Implementations
• Thrift
• Twitter’s Finagle
• Akka

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Considered but passed:
• PB-RPC Implementations
• Thrift
• Twitter’s Finagle
• Akka
• ØMQ

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Considered but passed:
• PB-RPC Implementations
• Thrift
• Twitter’s Finagle
• Akka
• ØMQ
• HTTP + JSON

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

• Considered but passed:
• PB-RPC Implementations
• Thrift
• Twitter’s Finagle
• Akka
• ØMQ
• HTTP + JSON
• ZeroC Ice

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

Wednesday, May 15, 13

Frameworks - DO IT LIVE!
• Ultimately implemented our own using combination of

Netty and Google Protocol Buffers called Reactor

Wednesday, May 15, 13

Frameworks - DO IT LIVE!
• Ultimately implemented our own using combination of

Netty and Google Protocol Buffers called Reactor
• Discovery (optional) using a defined tree of versioned

services in ZooKeeper

Wednesday, May 15, 13

Frameworks - DO IT LIVE!
• Ultimately implemented our own using combination of

Netty and Google Protocol Buffers called Reactor
• Discovery (optional) using a defined tree of versioned

services in ZooKeeper
• Service instances periodically publish load factor to

ZooKeeper for clients to inform routing decisions

Wednesday, May 15, 13

Frameworks - DO IT LIVE!
• Ultimately implemented our own using combination of

Netty and Google Protocol Buffers called Reactor
• Discovery (optional) using a defined tree of versioned

services in ZooKeeper
• Service instances periodically publish load factor to

ZooKeeper for clients to inform routing decisions
• Rich metrics using Yammer Metrics

Wednesday, May 15, 13

Frameworks - DO IT LIVE!
• Ultimately implemented our own using combination of

Netty and Google Protocol Buffers called Reactor
• Discovery (optional) using a defined tree of versioned

services in ZooKeeper
• Service instances periodically publish load factor to

ZooKeeper for clients to inform routing decisions
• Rich metrics using Yammer Metrics
• Core service traits are part of the framework

Wednesday, May 15, 13

Frameworks - DO IT LIVE!
• Ultimately implemented our own using combination of

Netty and Google Protocol Buffers called Reactor
• Discovery (optional) using a defined tree of versioned

services in ZooKeeper
• Service instances periodically publish load factor to

ZooKeeper for clients to inform routing decisions
• Rich metrics using Yammer Metrics
• Core service traits are part of the framework
• Service instances quiesce gracefully

Wednesday, May 15, 13

Frameworks - DO IT LIVE!
• Ultimately implemented our own using combination of

Netty and Google Protocol Buffers called Reactor
• Discovery (optional) using a defined tree of versioned

services in ZooKeeper
• Service instances periodically publish load factor to

ZooKeeper for clients to inform routing decisions
• Rich metrics using Yammer Metrics
• Core service traits are part of the framework
• Service instances quiesce gracefully
• Netty made UDP, Sync, Async. easy

Wednesday, May 15, 13

Frameworks - DO IT LIVE!
• All operations are Callables, services define a mapping b/t

a request type and a Callable
• Client API always returns a Future, sometimes it’s already

materialized
• Precise tuning from config files

Wednesday, May 15, 13

What We Learned - In General

Wednesday, May 15, 13

Frameworks - DO IT LIVE!

Wednesday, May 15, 13

What We Learned - In General

Wednesday, May 15, 13

What We Learned - In General

• Straight through RPC was fairly easy, edge cases were
hard

Wednesday, May 15, 13

What We Learned - In General

• Straight through RPC was fairly easy, edge cases were
hard

• ZooKeeper is brutal to program with, recover from errors

Wednesday, May 15, 13

What We Learned - In General

• Straight through RPC was fairly easy, edge cases were
hard

• ZooKeeper is brutal to program with, recover from errors
• Discovery is also difficult - clients need to defend

themselves, consider partitions

Wednesday, May 15, 13

What We Learned - In General

• Straight through RPC was fairly easy, edge cases were
hard

• ZooKeeper is brutal to program with, recover from errors
• Discovery is also difficult - clients need to defend

themselves, consider partitions
• RPC is great for latency, but upstream pushback is

important

Wednesday, May 15, 13

What We Learned - In General

• Straight through RPC was fairly easy, edge cases were
hard

• ZooKeeper is brutal to program with, recover from errors
• Discovery is also difficult - clients need to defend

themselves, consider partitions
• RPC is great for latency, but upstream pushback is

important
• Save RPC for latency sensitive operations - use Kafka

Wednesday, May 15, 13

What We Learned - In General

• Straight through RPC was fairly easy, edge cases were
hard

• ZooKeeper is brutal to program with, recover from errors
• Discovery is also difficult - clients need to defend

themselves, consider partitions
• RPC is great for latency, but upstream pushback is

important
• Save RPC for latency sensitive operations - use Kafka
• RPC less than ideal for fan-out

Wednesday, May 15, 13

What We Learned - In General

• Straight through RPC was fairly easy, edge cases were
hard

• ZooKeeper is brutal to program with, recover from errors
• Discovery is also difficult - clients need to defend

themselves, consider partitions
• RPC is great for latency, but upstream pushback is

important
• Save RPC for latency sensitive operations - use Kafka
• RPC less than ideal for fan-out
• PBs make future replay trivial

Wednesday, May 15, 13

What We Learned - TCP

Wednesday, May 15, 13

What We Learned - TCP

Wednesday, May 15, 13

What We Learned - TCP

• RTO (retransmission timeout) and Karn and Jacobson’s
Algorithms

Wednesday, May 15, 13

What We Learned - TCP

• RTO (retransmission timeout) and Karn and Jacobson’s
Algorithms
• Linux defaults to 15 retry attempts, 3 seconds between

Wednesday, May 15, 13

What We Learned - TCP

• RTO (retransmission timeout) and Karn and Jacobson’s
Algorithms
• Linux defaults to 15 retry attempts, 3 seconds between
• With no ACKs, congestion control kicks in and widens

that 3 second window exponentially, thinking its
congested

Wednesday, May 15, 13

What We Learned - TCP

• RTO (retransmission timeout) and Karn and Jacobson’s
Algorithms
• Linux defaults to 15 retry attempts, 3 seconds between
• With no ACKs, congestion control kicks in and widens

that 3 second window exponentially, thinking its
congested

• Connection timeout can take up to 30 minutes

Wednesday, May 15, 13

What We Learned - TCP

• RTO (retransmission timeout) and Karn and Jacobson’s
Algorithms
• Linux defaults to 15 retry attempts, 3 seconds between
• With no ACKs, congestion control kicks in and widens

that 3 second window exponentially, thinking its
congested

• Connection timeout can take up to 30 minutes
• Devices, Carriers and EC2 at scale eat FIN/RST

Wednesday, May 15, 13

What We Learned - TCP

• RTO (retransmission timeout) and Karn and Jacobson’s
Algorithms
• Linux defaults to 15 retry attempts, 3 seconds between
• With no ACKs, congestion control kicks in and widens

that 3 second window exponentially, thinking its
congested

• Connection timeout can take up to 30 minutes
• Devices, Carriers and EC2 at scale eat FIN/RST
• Our systems think a device is still online at the time of a

push

Wednesday, May 15, 13

What We Learned - TCP

Wednesday, May 15, 13

What We Learned - TCP

• After changing the RTO

Wednesday, May 15, 13

What We Learned - TCP

• After changing the RTO

Wednesday, May 15, 13

What We Learned - TCP

Wednesday, May 15, 13

What We Learned - TCP

Wednesday, May 15, 13

What We Learned - TCP

• Efficiency means understanding your traffic

Wednesday, May 15, 13

What We Learned - TCP

• Efficiency means understanding your traffic
• Size send/recv buffers appropriately (defaults way too low

for edge tier services)

Wednesday, May 15, 13

What We Learned - TCP

• Efficiency means understanding your traffic
• Size send/recv buffers appropriately (defaults way too low

for edge tier services)
• Nagle! Non-duplex protocols can benefit significantly

Wednesday, May 15, 13

What We Learned - TCP

• Efficiency means understanding your traffic
• Size send/recv buffers appropriately (defaults way too low

for edge tier services)
• Nagle! Non-duplex protocols can benefit significantly
• Example: 19K message deliveries per second vs. 2K

Wednesday, May 15, 13

What We Learned - TCP

• Efficiency means understanding your traffic
• Size send/recv buffers appropriately (defaults way too low

for edge tier services)
• Nagle! Non-duplex protocols can benefit significantly
• Example: 19K message deliveries per second vs. 2K
• Example: our protocol has a size frame, w/o Nagle that

went in its own packet

Wednesday, May 15, 13

What We Learned - TCP

Wednesday, May 15, 13

What We Learned - TCP

Wednesday, May 15, 13

What We Learned - TCP

Wednesday, May 15, 13

What We Learned - TCP

Wednesday, May 15, 13

What We Learned - TCP

Wednesday, May 15, 13

What We Learned - TCP

Wednesday, May 15, 13

What We Learned - TCP

Wednesday, May 15, 13

What We Learned - TCP

Wednesday, May 15, 13

What We Learned - TCP

• Don’t Nagle!

Wednesday, May 15, 13

What We Learned - TCP

• Don’t Nagle!
• Again, understand what your traffic is doing

Wednesday, May 15, 13

What We Learned - TCP

• Don’t Nagle!
• Again, understand what your traffic is doing
• Buffer and make one syscall instead of multiple

Wednesday, May 15, 13

What We Learned - TCP

• Don’t Nagle!
• Again, understand what your traffic is doing
• Buffer and make one syscall instead of multiple
• High-throughput RPC mechanisms disable it explicitly

Wednesday, May 15, 13

What We Learned - TCP

• Don’t Nagle!
• Again, understand what your traffic is doing
• Buffer and make one syscall instead of multiple
• High-throughput RPC mechanisms disable it explicitly
• Better mechanisms not accessible to JVM directly

Wednesday, May 15, 13

What We Learned - TCP

• Don’t Nagle!
• Again, understand what your traffic is doing
• Buffer and make one syscall instead of multiple
• High-throughput RPC mechanisms disable it explicitly
• Better mechanisms not accessible to JVM directly
• See also:

Wednesday, May 15, 13

What We Learned - TCP

• Don’t Nagle!
• Again, understand what your traffic is doing
• Buffer and make one syscall instead of multiple
• High-throughput RPC mechanisms disable it explicitly
• Better mechanisms not accessible to JVM directly
• See also:

• http://www.evanjones.ca/software/java-
bytebuffers.html

Wednesday, May 15, 13

http://www.evanjones.ca/software/java-bytebuffers.html
http://www.evanjones.ca/software/java-bytebuffers.html
http://www.evanjones.ca/software/java-bytebuffers.html
http://www.evanjones.ca/software/java-bytebuffers.html

What We Learned - TCP

• Don’t Nagle!
• Again, understand what your traffic is doing
• Buffer and make one syscall instead of multiple
• High-throughput RPC mechanisms disable it explicitly
• Better mechanisms not accessible to JVM directly
• See also:

• http://www.evanjones.ca/software/java-
bytebuffers.html

• http://blog.boundary.com/2012/05/02/know-a-delay-
nagles-algorithm-and-you/

Wednesday, May 15, 13

http://www.evanjones.ca/software/java-bytebuffers.html
http://www.evanjones.ca/software/java-bytebuffers.html
http://www.evanjones.ca/software/java-bytebuffers.html
http://www.evanjones.ca/software/java-bytebuffers.html
http://blog.boundary.com/2012/05/02/know-a-delay-nagles-algorithm-and-you/
http://blog.boundary.com/2012/05/02/know-a-delay-nagles-algorithm-and-you/
http://blog.boundary.com/2012/05/02/know-a-delay-nagles-algorithm-and-you/
http://blog.boundary.com/2012/05/02/know-a-delay-nagles-algorithm-and-you/

About UDP...

Wednesday, May 15, 13

About UDP...

Wednesday, May 15, 13

About UDP...

• Generally to be avoided

Wednesday, May 15, 13

About UDP...

• Generally to be avoided
• Great for small unimportant data like memcache operations

at extreme scale

Wednesday, May 15, 13

About UDP...

• Generally to be avoided
• Great for small unimportant data like memcache operations

at extreme scale
• Bad for RPC when you care about knowing if your request

was handled

Wednesday, May 15, 13

About UDP...

• Generally to be avoided
• Great for small unimportant data like memcache operations

at extreme scale
• Bad for RPC when you care about knowing if your request

was handled
• Conditions where you most want your data are also the

most likely to cause your data to be dropped

Wednesday, May 15, 13

About SSL/TLS

Wednesday, May 15, 13

About SSL/TLS

• Understand the consequences - complex, slow and
expensive, especially for internal services

Wednesday, May 15, 13

About SSL/TLS

• Understand the consequences - complex, slow and
expensive, especially for internal services

• ~6.5K and 4 hops to secure the channel

Wednesday, May 15, 13

About SSL/TLS

• Understand the consequences - complex, slow and
expensive, especially for internal services

• ~6.5K and 4 hops to secure the channel
• 40 bytes overhead per frame

Wednesday, May 15, 13

About SSL/TLS

• Understand the consequences - complex, slow and
expensive, especially for internal services

• ~6.5K and 4 hops to secure the channel
• 40 bytes overhead per frame
• 38.1MB overhead for every keep-alive sent to 1M devices

Wednesday, May 15, 13

About SSL/TLS

• Understand the consequences - complex, slow and
expensive, especially for internal services

• ~6.5K and 4 hops to secure the channel
• 40 bytes overhead per frame
• 38.1MB overhead for every keep-alive sent to 1M devices

TLS source: http://netsekure.org/2010/03/tls-overhead/

Wednesday, May 15, 13

http://netsekure.org/2010/03/tls-overhead/
http://netsekure.org/2010/03/tls-overhead/

We Learned About Carriers

Wednesday, May 15, 13

We Learned About Carriers

• Data plans are like gym memberships

Wednesday, May 15, 13

We Learned About Carriers

• Data plans are like gym memberships
• Aggressively cull idle stream connections

Wednesday, May 15, 13

We Learned About Carriers

• Data plans are like gym memberships
• Aggressively cull idle stream connections
• Don’t like TCP keepalives

Wednesday, May 15, 13

We Learned About Carriers

• Data plans are like gym memberships
• Aggressively cull idle stream connections
• Don’t like TCP keepalives
• Don’t like UDP

Wednesday, May 15, 13

We Learned About Carriers

• Data plans are like gym memberships
• Aggressively cull idle stream connections
• Don’t like TCP keepalives
• Don’t like UDP
• Like to batch, delay or just drop FIN/FIN ACK/RST

Wednesday, May 15, 13

We Learned About Carriers

• Data plans are like gym memberships
• Aggressively cull idle stream connections
• Don’t like TCP keepalives
• Don’t like UDP
• Like to batch, delay or just drop FIN/FIN ACK/RST
• Move data through aggregators

Wednesday, May 15, 13

About Devices...

Wednesday, May 15, 13

About Devices...

• Small compute units that do exactly what you tell them to

Wednesday, May 15, 13

About Devices...

• Small compute units that do exactly what you tell them to
• Like phone home when you push to them...

Wednesday, May 15, 13

About Devices...

• Small compute units that do exactly what you tell them to
• Like phone home when you push to them...
• 10M at a time...

Wednesday, May 15, 13

About Devices...

• Small compute units that do exactly what you tell them to
• Like phone home when you push to them...
• 10M at a time...
• Causing...

Wednesday, May 15, 13

About Devices...

• Small compute units that do exactly what you tell them to
• Like phone home when you push to them...
• 10M at a time...
• Causing...

Wednesday, May 15, 13

About Devices...

Wednesday, May 15, 13

About Devices...

• Herds can happen for many of reasons:

Wednesday, May 15, 13

About Devices...

• Herds can happen for many of reasons:
• Network events

Wednesday, May 15, 13

About Devices...

• Herds can happen for many of reasons:
• Network events
• Android imprecise timer

Wednesday, May 15, 13

About Devices...

• Herds can happen for many of reasons:
• Network events
• Android imprecise timer

Wednesday, May 15, 13

About Devices...

Wednesday, May 15, 13

About Devices...

• By virtue of being a mobile device, they move around a lot

Wednesday, May 15, 13

About Devices...

• By virtue of being a mobile device, they move around a lot
• When they move, they often change IP addresses

Wednesday, May 15, 13

About Devices...

• By virtue of being a mobile device, they move around a lot
• When they move, they often change IP addresses

• New cell tower

Wednesday, May 15, 13

About Devices...

• By virtue of being a mobile device, they move around a lot
• When they move, they often change IP addresses

• New cell tower
• Change connectivity - 4G -> 3G, 3G -> WiFi, etc.

Wednesday, May 15, 13

About Devices...

• By virtue of being a mobile device, they move around a lot
• When they move, they often change IP addresses

• New cell tower
• Change connectivity - 4G -> 3G, 3G -> WiFi, etc.

• When they change IP addresses, they need to reconnect
TCP sockets

Wednesday, May 15, 13

About Devices...

• By virtue of being a mobile device, they move around a lot
• When they move, they often change IP addresses

• New cell tower
• Change connectivity - 4G -> 3G, 3G -> WiFi, etc.

• When they change IP addresses, they need to reconnect
TCP sockets

• Sometimes they are kind enough to let us know

Wednesday, May 15, 13

About Devices...

• By virtue of being a mobile device, they move around a lot
• When they move, they often change IP addresses

• New cell tower
• Change connectivity - 4G -> 3G, 3G -> WiFi, etc.

• When they change IP addresses, they need to reconnect
TCP sockets

• Sometimes they are kind enough to let us know
• Those reconnections are expensive for us and the devices

Wednesday, May 15, 13

We Learned About EC2

Wednesday, May 15, 13

We Learned About EC2

• EC2 is a great jumping-off point

Wednesday, May 15, 13

We Learned About EC2

• EC2 is a great jumping-off point
• Scaling vertically is very expensive

Wednesday, May 15, 13

We Learned About EC2

• EC2 is a great jumping-off point
• Scaling vertically is very expensive
• Like Carriers, EC2 networking is fond of holding on to TCP

teardown sequence packets

Wednesday, May 15, 13

We Learned About EC2

• EC2 is a great jumping-off point
• Scaling vertically is very expensive
• Like Carriers, EC2 networking is fond of holding on to TCP

teardown sequence packets
• vNICs obfuscate important data when you care about 1M

connections

Wednesday, May 15, 13

We Learned About EC2

• EC2 is a great jumping-off point
• Scaling vertically is very expensive
• Like Carriers, EC2 networking is fond of holding on to TCP

teardown sequence packets
• vNICs obfuscate important data when you care about 1M

connections
• Great for surge capacity

Wednesday, May 15, 13

We Learned About EC2

• EC2 is a great jumping-off point
• Scaling vertically is very expensive
• Like Carriers, EC2 networking is fond of holding on to TCP

teardown sequence packets
• vNICs obfuscate important data when you care about 1M

connections
• Great for surge capacity
• Don’t split services into the virtual domain

Wednesday, May 15, 13

Lessons Learned - Failing Well

• Scale vertically and horizontally
• Scale vertically but remember...

• We can reliably take one Java process up to 990K open
connections

• What happens when that one process fails?
• What happens when you need to do maintenance?

Wednesday, May 15, 13

Thanks!

• Urban Airship http://urbanairship.com/
• Me @eonnen on Twitter or erik@urbanairship.com
• We’re hiring! http://urbanairship.com/company/jobs/

Wednesday, May 15, 13

http://urbanairship.com/
http://urbanairship.com/
mailto:erik@urbanairship.com
mailto:erik@urbanairship.com
http://urbanairship.com/company/jobs/
http://urbanairship.com/company/jobs/

Additional UA Reading

Wednesday, May 15, 13

Additional UA Reading

• Infrastructure Improvements - http://urbanairship.com/
blog/2012/05/17/scaling-urban-airships-messaging-
infrastructure-to-light-up-a-stadium-in-one-second/

Wednesday, May 15, 13

http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/

Additional UA Reading

• Infrastructure Improvements - http://urbanairship.com/
blog/2012/05/17/scaling-urban-airships-messaging-
infrastructure-to-light-up-a-stadium-in-one-second/

• C500K - http://urbanairship.com/blog/2010/08/24/c500k-
in-action-at-urban-airship/

Wednesday, May 15, 13

http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2010/08/24/c500k-in-action-at-urban-airship/
http://urbanairship.com/blog/2010/08/24/c500k-in-action-at-urban-airship/
http://urbanairship.com/blog/2010/08/24/c500k-in-action-at-urban-airship/
http://urbanairship.com/blog/2010/08/24/c500k-in-action-at-urban-airship/

