High Performance
Network Programming on the JVM

GeeCON, May 2013
Erik Onnen

About Me

Vancouver
o '
LS "
b
— 2PN
Seattle >
B North NS
Washington Dakota N Quebec Cit
Quebec Cit
Montana \ Quebec.City
% Minnesota -
Por . Ottawa Montreal
o £
Mnneapolis \\ o
0 | . ; Maine
South w ! /
Dakota isconsin | > Vermont
Oregon ek Michigan l o_) New
= / Torohto Hampshire
Wyoming Milwaukee @ / » New York P
Jetroi -~
\;,,[T Massachusetts
lowa Cricago -
Rug - Cleveland Connecticut
Nebraska o ~Rhode Island
Ohi Pennsylvania New York
hio
Denver llinois Indiana 4 Fhilageiphia
Nevada 2 United States Karisas City o I,:':,._h is olumbus Maryland NewdJersey
£ ' - aaliopy
Utah E West
Ny - AR Colorado & ‘ ve + Delaware
R Kansas Missouri St Lous ok ol
b i ;
S 4 . istrict o
¢ ST California Kentucky Virginia Columbia
ancsco
Las
North
Tennessee
Albuguerque Oklahoma _ Carolina
o Arkansas .
Charlotte
LOS Angeles '
P Arizona H"f('vo Atanta South
O Phoeno s Mississippi & Carolina
San Diego
N 2 o s al Alabama]
Q Tu Cwdad Fort Worth o ODallas Georgia
Juarez
W Texas
AuS Jacksonvile
[Houston Louisiana ©
- o)
SA0 Anjon)0
| Jahua
Tampac Florida
¥ of
1 fOrg “
Monterrey Mam
o Gulf of ;"
Mexico The
Bahamas
s

Wednesday, May 15, 13

New
| Bruns

About Me

 \/ice President, Architecture at Urban Airship
 Most of my career biased towards performance and scale

e Java, C++, Python in service oriented architectures

THE LATENCY

24
\." ~

i |
L IS'T00 DAMN

5 A ’
37

m

Wednesday, May 15, 13

In this Talk

e Terminology and Key Theorems

e Foundations for this talk (WTF is an “Urban Airship”?)
* Networked Systems on the JVM

e Choosing a framework

* Critical learnings

¢ Q&A

Wednesday, May 15, 13

L exicon

Wednesday, May 15, 13

L exicon

* Low Latency - | initiate an action with a service, how long
does that take

* Throughput - how many of those operations can | drive
through my architecture at one time?

e Scalability - how far can we push one service, how does it
fail

* Productivity - how quickly can | create a new operation”? A
Nnew service?

e Sustainability - when a service breaks, what'’s the time to

RCA s " 4

Wednesday, May 15, 13

Key Theorems

Wednesday, May 15, 13

Key Theorems

* Programming language can have a material impact on
runtime performance - it matters at scale

Wednesday, May 15, 13

Key Theorems

* Programming language can have a material impact on
runtime performance - it matters at scale

* Writing code is often the easy part of a developer’s job

Wednesday, May 15, 13

Key Theorems

* Programming language can have a material impact on
runtime performance - it matters at scale

* Writing code is often the easy part of a developer’s job

 Virtualized servers are often the victim of egregious crimes
against networking and system throughput (e.g. ec?2)

Wednesday, May 15, 13

Key Theorems

* Programming language can have a material impact on
runtime performance - it matters at scale

* Writing code is often the easy part of a developer’s job

 Virtualized servers are often the victim of egregious crimes
against networking and system throughput (e.g. ec?2)

* Async |/O for all the things isn’t always the best way to
maximize throughput from your servers

Wednesday, May 15, 13

Key Theorems

* Programming language can have a material impact on
runtime performance - it matters at scale

* Writing code is often the easy part of a developer’s job

 Virtualized servers are often the victim of egregious crimes
against networking and system throughput (e.g. ec?2)

* Async |/O for all the things isn’t always the best way to
maximize throughput from your servers

e Deviations in any of these can lead to more CoGS (bad for

startups)
P

Wednesday, May 15, 13

Key Theorems

* Programming language can have a material impact on
runtime performance - it matters at scale

* Writing code is often the easy part of a developer’s job

 Virtualized servers are often the victim of egregious crimes
against networking and system throughput (e.g. ec?2)

* Async |/O for all the things isn’t always the best way to
maximize throughput from your servers

e Deviations in any of these can lead to more CoGS (bad for
startups)

e Mobile makes all of these harder / !

Wednesday, May 15, 13

WTF is an Urban Airship?

e Fundamentally, an engagement platform

* Buzzword compliant - Cloud Service providing an API for
Mobile

* Unified API for services across platforms for messaging,
location, content entitlements, digital wallet assets

* SLASs for throughput, latency

e Heavy users and contributors to HBase, ZooKeeper,
Cassandra

Wednesday, May 15, 13

WTF is an Urban Airship?

kindle fire

VA

'
L 1] 5 SEOL
to Tie Worlc
. L e WA
b b 1

Wednesday, May 15, 13

What is Push?

» Cost T

* Throughput and immediacy

* The platform makes it compelling
* Push can be intelligent

e Push can be precisely targeted

e With great power comes great DoS flood

Wednesday, May 15, 13

How does this relate to the JVM?

* \WWe deal with lots of heterogeneous connections from the
public network, the vast majority of them are handled by a
JVM

e [ngress:

e 28K HTTPS requests handled every second

e > 20 million devices connected at any one time
 |nternally:

* Millions of operations per second across our LAN

e > 20 billion operational metrics a day

Wednesday, May 15, 13

Life In Interesting Times

e Fundamentally, SSDs are changing how we think about
developing for the JVM

e Similarly, the cost of RAM has made 256GB memory a
practical thing but harder to make good use with JVM

* These concerns are not “Big Data”

Wednesday, May 15, 13

Distributed Systems on the JVM

e Platform has several tools baked in
« HTTP Client and Server
 RMI (Remote Method Invocation) or better JINI
 CORBA/IIOP
« JDBC
e Lower level
e Sockets + streams, channels + buffers
e Reader/Writer for text

« Javab brought NIO which included Async 1/0O

Wednesday, May 15, 13

Distributed Systems on the JVM

e Java 7 brought Asynchronous(Server)SocketChannel
* Thread pool-backed buffered connect, reads, writes

e Nicer abstraction than dealing with buffered offsets, spurious
wake-up manually

 Fundamentally, the JVM suffers from lowest common denominator
problems with the NIO/NIO.2 abstractions

Wednesday, May 15, 13

Synchronous vs. Async |/O

Synchronous vs. Async |/O

* Synchronous Network 1/0O on the JRE
e Sockets (InputStream, OutputStream)
e Channels and Buffers

* Asynchronous Network I/O on the JRE

* Selectors (async)

e Buffers fed to Channels which are asynchronous

* Almost all asynchronous APIs are for Socket I/0O
e Can operate on direct, off heap buffers

» Offer decent low-level configuration options

Wednesday, May 15, 13

Synchronous vs. Async |/O

* Synchronous |I/O has many upsides on the JVM

e Clean streaming - good for moving around really large
things

e Sendfile support for MMap’d files
(FilleChannel::transferTo)

 \/ectored |/O support

* No need for additional SSL/TLS albstractions (except for
maybe Keystore cruft)

* No idiomatic impedance for RPC

Wednesday, May 15, 13

Synchronous vs. Async |/O

Wednesday, May 15, 13

Synchronous vs. Async |/O

* Synchronous |/O - doing it well

Wednesday, May 15, 13

Synchronous vs. Async |/O

* Synchronous |/O - doing it well

e Buffers all the way down (streams, readers, channels)

Wednesday, May 15, 13

Synchronous vs. Async |/O

* Synchronous |/O - doing it well
e Buffers all the way down (streams, readers, channels)

* Minimize trips across the system boundary

Wednesday, May 15, 13

Synchronous vs. Async |/O

* Synchronous |/O - doing it well
e Buffers all the way down (streams, readers, channels)
* Minimize trips across the system boundary

* Minimize copies of data

Wednesday, May 15, 13

Synchronous vs. Async |/O

e Synchronous I/O - doing it well
e Buffers all the way down (streams, readers, channels)
* Minimize trips across the system boundary
* Minimize copies of data

 \ector |/O if possible

Wednesday, May 15, 13

Synchronous vs. Async |/O

e Synchronous I/O - doing it well
e Buffers all the way down (streams, readers, channels)
* Minimize trips across the system boundary
* Minimize copies of data
 \ector |/O if possible
 MMap If possible

Wednesday, May 15, 13

Synchronous vs. Async |/O

e Synchronous I/O - doing it well
e Buffers all the way down (streams, readers, channels)
* Minimize trips across the system boundary
* Minimize copies of data
 \ector |/O if possible
 MMap If possible
e Favor direct ByteBufffers and NIO Channels

Wednesday, May 15, 13

Synchronous vs. Async |/O

e Synchronous I/O - doing it well
e Buffers all the way down (streams, readers, channels)
* Minimize trips across the system boundary
* Minimize copies of data
 \ector |/O if possible
 MMap If possible
e Favor direct ByteBufffers and NIO Channels

* Manage timeout expectations

Wednesday, May 15, 13

Synchronous vs. Async |/O

Wednesday, May 15, 13

Synchronous vs. Async |/O

* Async |/O

» On Linux, implemented via epoll as the “Selector”
abstraction with async Channels

e Async Channels feed buffers, you have to tend to fully
reading/writing them (addressed in Java 7)

e Async I/O - doing it well
* Again, favor direct ByteBuffers, especially for large data

e Consider the application - what do you gain by not
waiting for a response”?

* Avoid manual TLS operations

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

Sync vs. Async - FIGHT!

e Server with large numbers of clients

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

e Server with large numbers of clients

* Only way to be notified if a socket is
closed without trying to read it

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

e Server with large numbers of clients

* Only way to be notified if a socket is
closed without trying to read it

e | arge number of open sockets

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

e Server with large numbers of clients

* Only way to be notified if a socket is
closed without trying to read it

e | arge number of open sockets

e Lightweight proxying of traffic

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

Sync vs. Async - FIGHT!

e Context switching, CPU cache
pipeline loss can be substantial
overhead for simple protocols

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

e Context switching, CPU cache
pipeline loss can be substantial
overhead for simple protocols

* Not always the best option for raw,
full bore throughput

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

e Context switching, CPU cache
pipeline loss can be substantial
overhead for simple protocols

* Not always the best option for raw,
full bore throughput

o Complexity, ability to reason about
code diminished

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

/\"»,fi‘ |()l)v.

BYou[mayjrecall/sequentiallcode’
w ﬂleﬁiraeam

r

NP/ WWW.YOUTURE.COM/WalCn ¢ V=0DzZKRnVZCIAZgalieature=player aetallipe SH
m - >

Wednesday, May 15, 13

http://www.youtube.com/watch?v=bzkRVzciAZg&feature=player_detailpage#t=133s
http://www.youtube.com/watch?v=bzkRVzciAZg&feature=player_detailpage#t=133s

Sync vs. Async - FIGHT!

Sync vs. Async - FIGHT!

o Simplicity, readability

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

o Simplicity, readability

e Better fit for dumb protocols, less
impedance for request/reply

Wednesday, May 15, 13

Sync vs. Async - FIGHT!

o Simplicity, readability

e Better fit for dumb protocols, less
impedance for request/reply

* Squeezing every bit of throughput
out of a single host, small number of
threads

Wednesday, May 15, 13

Sync vs. Async - Memcache

 UA uses memcached heavily

e memcached is an awesome example of why choosing
Sync vs. Async is hard

e Puts always should be completely asynchronous
* Reads are fairly useless when done asynchronously
e Protocol doesn’t lend itself well to Async |/0O

e For Java clients, we experimented with Xmemcached but
didn’t like its complexity, /0O approach

e Created FSMC (freakin’ simple memcache client)

Wednesday, May 15, 13

FSMC vs. Xmemcached

Synch vs. Async Memcache Client Throughput
60000

45000

30000

15000

SET/GET per Second

1 2 4 8 16 32 56 128
Threads

O FSMC (nhonagle) — FSMC Xmemcached O

Wednesday, May 15, 13

FSMC vs. Xmemcached

FSMC: Xmemcached:

% time seconds usecs/call calls errors syscall % time seconds usecs/call calls errors syscall
09.97 143.825726 11811 12177 2596 futex 54.87 875.668275 4325 202456 epoll_wait
0.01 0.014143 0 402289 read 45.13 720.259447 454 1587899 130432 futex
0.01 0.011088 0 200000 writev 0.00 0.020783 3 6290 sched yield
0.01 0.008087 0 200035 write 0.00 0.011119 0 200253 write
0.00 0.002831 0 33223 mprotect 0.00 0.008682 0 799387 2 epoll_ctl
0.00 0.001664 12 139 madvise 0.00 0.003759 0 303004 100027 read
0.00 0.000403 1 681 brk 0.00 0.000066 0 1099 mprotect
0.00 0.000381 0 1189 sched_yield 0.00 0.000047 1 81 madvise
0.00 0.000000 0 120 59 open 0.00 0.000026 0 92 sched_getaffinity
0.00 0.000000 0 68 close 0.00 0.000000 0 126 59 open
0.00 0.000000 0 108 42 stat 0.00 0.000000 0 148 close
0.00 0.000000 0 59 fstat 0.00 0.000000 0 109 42 stat
0.00 0.000000 0 124 3 Istat 0.00 0.000000 0 61 fstat
0.00 0.000000 0 2248 Iseek 0.00 0.000000 0 124 3 Istat
0.00 0.000000 0 210 mmap 0.00 0.000000 0 2521 Iseek

0.00 0.000000 0 292 mmap
14:37:31,568 INFO [main] 14:38:09,912 INFO [main]

[com.urbanairship.oscon.memcache.FsmcTest] Finished [com.urbanairship.oscon.memcache.XmemcachedTest]

800000 operations in 12659ms. Finished 800000 operations in 18078ms.

real 0Om12.881s real 0m18.248s -

user 0m34.430s user 0m30.020s ,

sys 0m22.830s sys 0m16.700s . =

Wednesday, May 15, 13

A Word on Garbage Collection

Wednesday, May 15, 13

A Word on Garbage Collection

 Any JVM service on most hardware has to live with GC

Wednesday, May 15, 13

A Word on Garbage Collection

 Any JVM service on most hardware has to live with GC

e A good citizen will create lots of ParNew garbage and
nothing more

Wednesday, May 15, 13

A Word on Garbage Collection

 Any JVM service on most hardware has to live with GC

e A good citizen will create lots of ParNew garbage and
nothing more

e Allocation Is near free

Wednesday, May 15, 13

A Word on Garbage Collection

 Any JVM service on most hardware has to live with GC

e A good citizen will create lots of ParNew garbage and
nothing more

e Allocation Is near free

» Collection also near free if you don’t copy anything

Wednesday, May 15, 13

A Word on Garbage Collection

 Any JVM service on most hardware has to live with GC

e A good citizen will create lots of ParNew garbage and
nothing more

* Allocation is near free
» Collection also near free if you don’t copy anything

e Don’t buffer large things, stream or chunk

Wednesday, May 15, 13

A Word on Garbage Collection

 Any JVM service on most hardware has to live with GC

e A good citizen will create lots of ParNew garbage and
nothing more

* Allocation is near free
» Collection also near free if you don’t copy anything
e Don’t buffer large things, stream or chunk

* \When you must cache:

Wednesday, May 15, 13

A Word on Garbage Collection

 Any JVM service on most hardware has to live with GC

e A good citizen will create lots of ParNew garbage and
nothing more

 Allocation is near free

» Collection also near free if you don’t copy anything
e Don’t buffer large things, stream or chunk
* \When you must cache:

e Cache early and don’t touch

Wednesday, May 15, 13

A Word on Garbage Collection

 Any JVM service on most hardware has to live with GC

e A good citizen will create lots of ParNew garbage and
nothing more

 Allocation is near free

» Collection also near free if you don’t copy anything
e Don’t buffer large things, stream or chunk
* \When you must cache:

e Cache early and don’t touch

e Better, cache off heap or use memcached

Wednesday, May 15, 13

arbage Collection

Wednesday, May 15, 13

ord on Garbage Collection

Wednesday, May 15, 13

ord on Garbage Collection

Wednesday, May 15, 13

About EC2...

When you care about throughput, the virtualization tax is high

300

225

150

75

ParNew GC Effectiveness

MB Collected

' Bare Metal

~ EC2 XL

Wednesday, May 15, 13

About EC2...

When you care about throughput, the virtualization tax is high
Mean Time ParNew GC

0.04

0.03

0.02

0.01

Collection Time (sec)

B Bare Metal = EC2XL « sl

Wednesday, May 15, 13

How we do at UA

* Originally our codebase was mostly one giant monolithic
application, over time several databases

* Difficult to scale, technically and operationally

* \Wanted to break off large pieces of functionality into coarse
grained services encapsulating their capabllity and function

 Most message exchange was done using beanstalkd after
migrating off RabbitMQ

* Fundamentally, our business Is message passing we need
to do that efficiently

Wednesday, May 15, 13

Choosing A Framework

Wednesday, May 15, 13

Choosing A Framework

e All frameworks are a form of concession

Wednesday, May 15, 13

Choosing A Framework

e All frameworks are a form of concession

* Nobody would use Spring if people called it “Concessions
to the horrors of EJB”

Wednesday, May 15, 13

Choosing A Framework

e All frameworks are a form of concession

* Nobody would use Spring if people called it “Concessions
to the horrors of EJB”

* Understand concessions when choosing, look for:

Wednesday, May 15, 13

Choosing A Framework

e All frameworks are a form of concession

* Nobody would use Spring if people called it “Concessions
to the horrors of EJB”

* Understand concessions when choosing, look for:

e Configuration options - how do | configure Nagle
behavior”? Socket buffer sizes?

Wednesday, May 15, 13

Choosing A Framework

e All frameworks are a form of concession

* Nobody would use Spring if people called it “Concessions
to the horrors of EJB”

* Understand concessions when choosing, look for:

e Configuration options - how do | configure Nagle
behavior”? Socket buffer sizes?

e Metrics - what does the framework tell me about its
iINnternals?

Wednesday, May 15, 13

Choosing A Framework

e All frameworks are a form of concession

* Nobody would use Spring if people called it “Concessions
to the horrors of EJB”

* Understand concessions when choosing, look for:

e Configuration options - how do | configure Nagle
behavior”? Socket buffer sizes?

e Metrics - what does the framework tell me about its
iINnternals?

* Intelligent logging - next level down from metrics

Wednesday, May 15, 13

Choosing A Framework

e All frameworks are a form of concession

* Nobody would use Spring if people called it “Concessions
to the horrors of EJB”

* Understand concessions when choosing, look for:

e Configuration options - how do | configure Nagle
behavior”? Socket buffer sizes?

e Metrics - what does the framework tell me about its
iINnternals?

* Intelligent logging - next level down from metrics

* How does the framework play with peers”?

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Our requirements:

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Our requirements:

e Capable of > 100K requests per second in aggregate
across multiple threads

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Our requirements:

e Capable of > 100K requests per second in aggregate
across multiple threads

e Simple protocol - easy to reason about, inspect

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Our requirements:

e Capable of > 100K requests per second in aggregate
across multiple threads

e Simple protocol - easy to reason about, inspect

e Efficient, extensible wire format - Google Protocol Buffers

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Our requirements:

e Capable of > 100K requests per second in aggregate
across multiple threads

e Simple protocol - easy to reason about, inspect
e Efficient, extensible wire format - Google Protocol Buffers

 Compostable - easily create new services

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Our requirements:

e Capable of > 100K requests per second in aggregate
across multiple threads

e Simple protocol - easy to reason about, inspect
e Efficient, extensible wire format - Google Protocol Buffers
 Compostable - easily create new services

e Support both sync and async operations

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Our requirements:

e Capable of > 100K requests per second in aggregate
across multiple threads

e Simple protocol - easy to reason about, inspect

e Efficient, extensible wire format - Google Protocol Buffers
 Compostable - easily create new services

e Support both sync and async operations

» Support for multiple languages (Python, Java, C++)

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Our requirements:

e Capable of > 100K requests per second in aggregate
across multiple threads

e Simple protocol - easy to reason about, inspect

e Efficient, extensible wire format - Google Protocol Buffers
 Compostable - easily create new services

e Support both sync and async operations

e Support for multiple languages (Python, Java, C++)

e Simple configuration

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

* Requirements:

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

* Requirements:

* Discovery mechanism for finding/discarding services

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

* Requirements:
* Discovery mechanism for finding/discarding services

e Application congestion control combined with clear
responsibility contracts

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

* Requirements:
* Discovery mechanism for finding/discarding services

e Application congestion control combined with clear
responsibility contracts

e Optional:

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

* Requirements:
* Discovery mechanism for finding/discarding services

e Application congestion control combined with clear
responsibility contracts

e Optional:

* Adaptive load balancing

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

* Requirements:
* Discovery mechanism for finding/discarding services

e Application congestion control combined with clear
responsibility contracts

e Optional:
* Adaptive load balancing

* Automated network partition recovery

Wednesday, May 15, 13

Frameworks - Akka

* Predominantly Scala platform for sending messages,
distributed incarnation of the Actor pattern

* Message abstraction tolerates distribution well

« If you like OTP, you'll probably like Akka

Wednesday, May 15, 13

Frameworks - Akka

: *x Parent trait for all messages.
) */
- sealed trait GeoMessage

ek

: % Indicates the type of event received.

2 */

- sealed trait GeoEventType extends GeoMessage

- case class SignificantChange() extends GeoEventType
- case class MinorChange() extends GeoEventType

/K
: % A geo event published from a device when it changes Lat/Long.
+ @param devicelD
+* @param timestamp
+ @param lat
+ @param long
- @param eventType
D) %/
case class GeoEvent(deviceID:String, timestamp:Long, lat:Double, long:Double, eventType:GeoEventType) extends GeoMessage

- sealed trait ResponseCode extends GeoMessage
- case class Ok() extends ResponseCode

- case class Error() extends ResponseCode

- case class Busy() extends ResponseCode

%case class StorageResponse(code:ResponseCode, message:Option[String])

Wednesday, May 15, 13

Frameworks - Akka

/%
: % Actor responsible for storing device events.

2 ¥/

Jclass StorageActor extends Actor with ActorlLogging {

val metric:MeterMetric = Metrics.newMeter(
new MetricName("Akka", "Storage", "Operation"), "Operations", TimeUnit.SECONDS);

def receive = {

case GeoEvent(deviceID:String, timestamp:Long, lat:Double, long:Double, eventType:GeoEventType) => {
//store that device by devicelD
metric.mark();
sender ! StorageResponse(0k(), Option{null))

}

case _ => {
log.error("Unknown message type")
sender ! StorageResponse(Error(), Option("Unknown message type"))

Wednesday, May 15, 13

Frameworks - Akka

e Cons:
* \We don'’t like reading other people’s Scala

e Some pretty strong assertions in the docs that aren’t
substantiated

e Bulky wire protocol, especially for primitives
e Configuration felt complicated
e Sheer surface area of the framework is daunting

e Unclear integration story with Python

* Don’t want Dynamo for simple RPC

Wednesday, May 15, 13

Frameworks - Aleph

» Clojure framework based on Netty, Lamina

* Conceptually funs are applied to channels to move around
messages

e Channels are refs that you realize when you want data
e Operations with channels very easy

e Concise format for standing up clients and services using
text protocols

Wednesday, May 15, 13

(def metric (Metrics/newMeter (MetricName. "Geo Server", "Metrics", "Request") "Requests" TimeUnit/SECONDS))
(defn mark [] (.mark metric))
(def port (ref 3345))

(defn buffer-to-bytes
"Convert bytes remaining in a ByteBuffer to low level byte array"
[AByteBuffer buffer]
(let [target (byte-array (.remaining buffer))]
(.get buffer target)
target))

(defn parse-event [AByteBuffer buffer]
(try (GeoMsg$GeoEvent/parseFrom (buffer-to-bytes))
(catch InvalidProtocolBufferException ipbe (error "Invalid message " ipbe))))

(defn validate-event
"Validate that the latidude and longitude are within acceptable bounds given a GeoEvent"
[AGeoMsg$GeoEvent event]
(if (and (G -99 (.getLat event)) (< 99 (.getlLong event))) true false))

(defn store-event
"Given channel data buffer, attempt to parse and validate the data"
[AByteBuffer buffer]
(info "Handling message " (.size buffer))
(let [event (parse-event buffer)]
(when event ((mark) (validate-event event)))))

(defn message-handler [channel client] (receive-all channel store-event))

(defn start []

(info "Configuring server handler")
(start-tcp-server message-handler {:port @port})
(info "Handler configured"))

Wednesday, May 15, 13

(defn rando-event
“"Generate a test event”

L]
Cevent (str(now)) (next-lat-long) (next-lat-long)))

(defn to-bytes

“"Convert a Protocol Buffer Message a ByteBuffer"
[AMessage event]

(ByteBuffer/wrap(.toByteArray event)))

(defn parse-response
"Parse a ByteBuffer response from the aleph layer into a StorageResponse"
[AByteBuffer buffer]
(let [raw (byte-array (.remaining buffer))]
(.get buffer raw)
(GeoMsg$StorageResponse/parseFrom raw)))

(defn verify-response
“Make sure that the response matches the request"
[request response]
(true? (= (.getEventId request) (.getEventId response))))

(defn handle-response
“Given a response buffer, parse and verify, if successful invoke the success callback"

[request response success]
(if (verify-response request (parse-response response)) (success) (throw (RuntimeException. "Invalid result!"))))

(defn do-requests
“"Execute the given number of requests verifying the output of each"
[count channel]
(dotimes [iteration count]
(when (= 1000 (mod iteration 1000) (info (str "Performing iteration " iteration))))
(let [request (rando-event) timer (now)]
(enqueue channel (to-bytes request))
(info "Enqueued message")
(handle-response request (read-channel channel) #(mark timer)))))

(defn connect
([] (connect @host @port))
([host port] (tcp-client {:host host :port port})))

Wednesday, May 15, 13

Frameworks - Aleph

e Cons:
 \Very high level abstraction, knobs are buried if they exist

* Channel concept leaky for large messages, unclear how
{O stream

e Documentation, tests

Wednesday, May 15, 13

Frameworks - Netty

* The preeminent framework for doing Async Network [/O
on the JVM

e Netty Channels backed by pipelines on top of lower level
NIO Channels

e Pros:
e Abstraction doesn’t hide the important pieces
* The only sane way to do SSL with Async I/O on the JVM
e Protocols well abstracted into pipeline steps

e Clean callback model for events of interest but optlonal IN
simple cases - no death by callback

~

Wednesday, May 15, 13

Frameworks - Netty

* Cons:
e Fasy to make too many copies of the data
e Some old school bootstrap idioms
* \Writes can occasionally be reordered

e Fallure conditions can be numerous, difficult to reason
about

e Simple things can feel difficult - UDP, simple request/reply

e Sync timeout implementation heavy-handed

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Considered but passed:

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Considered but passed:

 PB-RPC Implementations

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Considered but passed:
 PB-RPC Implementations
e Thrift

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Considered but passed:
 PB-RPC Implementations
e Thrift

e Twitter's Finagle

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Considered but passed:
 PB-RPC Implementations
e Thrift

e Twitter's Finagle

* Akka

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Considered but passed:
 PB-RPC Implementations
e Thrift

e Twitter's Finagle
e Akka
e OMQ

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Considered but passed:
 PB-RPC Implementations
e Thrift

e Twitter's Finagle
» Akka

* OMQ

e HTTP + JSON

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Considered but passed:
 PB-RPC Implementations
e Thrift

e Twitter's Finagle
» Akka

* OMQ

e HTTP + JSON

e /eroC Ice

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Ultimately implemented our own using combination of
Netty and Google Protocol Buffers called Reactor

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Ultimately implemented our own using combination of
Netty and Google Protocol Buffers called Reactor

» Discovery (optional) using a defined tree of versioned
services In ZooKeeper

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Ultimately implemented our own using combination of
Netty and Google Protocol Buffers called Reactor

» Discovery (optional) using a defined tree of versioned
services In ZooKeeper

e Service instances periodically publish load factor to
/00Keeper for clients to inform routing decisions

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Ultimately implemented our own using combination of
Netty and Google Protocol Buffers called Reactor

» Discovery (optional) using a defined tree of versioned
services In ZooKeeper

e Service instances periodically publish load factor to
/00Keeper for clients to inform routing decisions

e Rich metrics using Yammer Metrics

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Ultimately implemented our own using combination of
Netty and Google Protocol Buffers called Reactor

» Discovery (optional) using a defined tree of versioned
services In ZooKeeper

e Service instances periodically publish load factor to
/00Keeper for clients to inform routing decisions

e Rich metrics using Yammer Metrics

e Core service traits are part of the framework

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Ultimately implemented our own using combination of
Netty and Google Protocol Buffers called Reactor

» Discovery (optional) using a defined tree of versioned
services In ZooKeeper

e Service instances periodically publish load factor to
/00Keeper for clients to inform routing decisions

e Rich metrics using Yammer Metrics
e Core service traits are part of the framework

e Service instances quiesce gracefully

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

e Ultimately implemented our own using combination of
Netty and Google Protocol Buffers called Reactor

» Discovery (optional) using a defined tree of versioned
services In ZooKeeper

e Service instances periodically publish load factor to
/00Keeper for clients to inform routing decisions

e Rich metrics using Yammer Metrics
e Core service traits are part of the framework

e Service instances quiesce gracefully

* Netty made UDP, Sync, Async. easy

Wednesday, May 15, 13

Frameworks - DO [T LIVE!

* All operations are Callables, services define a mapping b/t
a request type and a Callable

e Client API always returns a Future, sometimes it’s already
materialized

* Precise tuning from config files

public SocketConfiguration{Configuration config) {
serverBacklog = config.getInt("leatherman.socket.serverBacklog”, 100);
connectTimeout = config.getInt("leatherman.socket.connectTimeout"”, 3000);
sendBufferSize = config.getInt("leatherman.socket.sendBufferSize", 16777216);
recvBufferSize = config.getInt("leatherman.socket.recvBufferSize", 16777216);
socketTimeout = config.getInt("leatherman.socket.timeout", 3000);
tcpNoDelay = config.getBoolean("leatherman.socket.tcpNoDelay"”, false);
soReuseAddr = config.getBoolean("leatherman.socket.soReuseAddr", true);
tcpKeepAlive = config.getBoolean("leatherman.socket.tcpKeepAlive", true);
maxAgeMillis = config.getInt("leatherman.socket.maxAgeMillis", 0);
maxIdleTimeMillis = config.getInt("leatherman.socket.maxIdleTimeMillis", 0);

o S

Wednesday, May 15, 13

What We Learned - In General

WatchedEvent state:SyncConnected type:None path:null
ls /

[heisen, richpush, services, hbase, zookeeper, consumers, helium, metalstorm, brokers]
[zk: msg-keeper-0:2181(CONNECTED) 2] 1s /services

[yaw, notary, keymaster, albatross, falconpunch, gooeybuttercake, redwoodsearch, metals
[zk: msg-keeper-0:2181(CONNECTED) 3] 1s /services/falconpunch

[1.0]

[zk: msg-keeper-0:2181(CONNECTED) 4] 1s /services/falconpunch/1.0
[10.128.10.72:7800, 10.128.10.26:7800, 10.128.10.24:7800, 10.128.10.70:7800]

Wednesday, May 15, 13

Frameworks - DO |T LIVE!

@0verride

public void run() {
final long totalTimer = System.currentTimeMillis();
log.info("Starting.");

for (int i = @; i < operations; i++) {
final long timer = System.currentTimeMillis();
final Reactor.Request request = getRequest();
final Future<Reactor.Response> future = client.send(request);
try {
final Reactor.Response response = future.get(5, TimeUnit.SECONDS);
if (response.getRequestId() != request.getRequestId()) {
log.error("Got a response for " + response.getRequestId() + " but expected " +
request.getRequestId());
return;
}
metrics.update(System.currentTimeMillis() - timer, TimeUnit.MILLISECONDS);
if (1 % 1000 = 0 &8 1 > @) {
log.info("Processed " + i + " requests.");
}

} catch (Exception ex) {
log.error("Failed to obtain response for request " + request.getRequestId(), ex);
System.exit(1);
}
}

successful = true;
log.info("Processed " + operations + " operations in " + (System.currentTimeMillis() - totalTimer) + "ms.");

Wednesday, May 15, 13

What We Learned - In General

Wednesday, May 15, 13

What We Learned - In General

e Straight through RPC was fairly easy, edge cases were
hard

Wednesday, May 15, 13

What We Learned - In General

e Straight through RPC was fairly easy, edge cases were
hard

e /Z0OKeeper Is brutal to program with, recover from errors

Wednesday, May 15, 13

What We Learned - In General

e Straight through RPC was fairly easy, edge cases were
hard

e /Z0OKeeper Is brutal to program with, recover from errors

e Discovery is also difficult - clients need to defend
themselves, consider partitions

Wednesday, May 15, 13

What We Learned - In General

e Straight through RPC was fairly easy, edge cases were
hard

e /Z0OKeeper Is brutal to program with, recover from errors

e Discovery is also difficult - clients need to defend
themselves, consider partitions

 RPC Is great for latency, but upstream pushback is
important

Wednesday, May 15, 13

What We Learned - In General

e Straight through RPC was fairly easy, edge cases were
hard

e /Z0OKeeper Is brutal to program with, recover from errors

e Discovery is also difficult - clients need to defend
themselves, consider partitions

 RPC Is great for latency, but upstream pushback is
important

e Save RPC for latency sensitive operations - use Kafka

Wednesday, May 15, 13

What We Learned - In General

e Straight through RPC was fairly easy, edge cases were
hard

e /Z0OKeeper Is brutal to program with, recover from errors

e Discovery is also difficult - clients need to defend
themselves, consider partitions

 RPC Is great for latency, but upstream pushback is
important

e Save RPC for latency sensitive operations - use Kafka

e RPC less than ideal for fan-out

Wednesday, May 15, 13

What We Learned - In General

e Straight through RPC was fairly easy, edge cases were
hard

e /Z0OKeeper Is brutal to program with, recover from errors

e Discovery is also difficult - clients need to defend
themselves, consider partitions

 RPC Is great for latency, but upstream pushback is
important

e Save RPC for latency sensitive operations - use Kafka

e RPC less than ideal for fan-out

* PBs make future replay trivial

Wednesday, May 15, 13

What We Learned - TCP

What We Learned - TCP

What We Learned - TCP

 RTO (retransmission timeout) and Karn and Jacobson’s
Algorithms

Wednesday, May 15, 13

What We Learned - TCP

 RTO (retransmission timeout) and Karn and Jacobson’s
Algorithms

e Linux defaults to 15 retry attempts, 3 seconds between

Wednesday, May 15, 13

What We Learned - TCP

 RTO (retransmission timeout) and Karn and Jacobson’s
Algorithms

e Linux defaults to 15 retry attempts, 3 seconds between

* With no ACKs, congestion control kicks in and widens
that 3 second window exponentially, thinking its
congested

Wednesday, May 15, 13

What We Learned - TCP

 RTO (retransmission timeout) and Karn and Jacobson’s
Algorithms

e Linux defaults to 15 retry attempts, 3 seconds between

* With no ACKs, congestion control kicks in and widens

that 3 second window exponentially, thinking its
congested

e Connection timeout can take up to 30 minutes

Wednesday, May 15, 13

What We Learned - TCP

 RTO (retransmission timeout) and Karn and Jacobson’s
Algorithms

e Linux defaults to 15 retry attempts, 3 seconds between

* With no ACKs, congestion control kicks in and widens
that 3 second window exponentially, thinking its
congested

e Connection timeout can take up to 30 minutes

e Devices, Carriers and EC2 at scale eat FIN/RST

Wednesday, May 15, 13

What We Learned - TCP

 RTO (retransmission timeout) and Karn and Jacobson’s
Algorithms

e Linux defaults to 15 retry attempts, 3 seconds between

* With no ACKs, congestion control kicks in and widens
that 3 second window exponentially, thinking its
congested

e Connection timeout can take up to 30 minutes
e Devices, Carriers and EC2 at scale eat FIN/RST

e Our systems think a device is still online at the time of a

push ,

Wednesday, May 15, 13

What We Learned - TCP

What We Learned - TCP

e After changing the RTO

Wednesday, May 15, 13

What We Learned - TCP

o After changing the RTO

Wednesday, May 15, 13

What We Learned - TCP

What We Learned - TCP

What We Learned - TCP

e Efficiency means understanding your traffic

Wednesday, May 15, 13

What We Learned - TCP

e Efficiency means understanding your traffic

e Size send/recv buffers appropriately (defaults way too low
for edge tier services)

Wednesday, May 15, 13

What We Learned - TCP

e Efficiency means understanding your traffic

e Size send/recv buffers appropriately (defaults way too low
for edge tier services)

* Nagle! Non-duplex protocols can benefit significantly

Wednesday, May 15, 13

What We Learned - TCP

e Efficiency means understanding your traffic

e Size send/recv buffers appropriately (defaults way too low
for edge tier services)

* Nagle! Non-duplex protocols can benefit significantly

 Example: 19K message deliveries per second vs. 2K

Wednesday, May 15, 13

What We Learned - TCP

e Efficiency means understanding your traffic

e Size send/recv buffers appropriately (defaults way too low
for edge tier services)

* Nagle! Non-duplex protocols can benefit significantly
 Example: 19K message deliveries per second vs. 2K

e Example: our protocol has a size frame, w/o Nagle that
went In its own packet

Wednesday, May 15, 13

What We Learned - TCP

What We Learned - TCP

— Frame Size —

IP/TCP Header (42)

ACK (42)

Size (2)

— Frame Message —

IP/TCP Header (42)

ACK (42)

Registration (250)

Wednesday, May 15, 13

What We Learned - TCP

— Frame Size —

IP/TCP Header (42) Size (2)

ACK (42)

\%

IP/TCP Header (42)

— Frame Message —

Registration (250)

ACK (42)

Wednesday, May 15, 13

What We Learned - TCP

What We Learned - TCP

— Frame Size | Frame Message :

IP/TCP Header (42) Size (2) Registration (250)

ACK (42) I

Wednesday, May 15, 13

What We Learned - TCP

— Frame Size —| Frame Message :

IP/TCP Header (42) Size (2) Registration (250)

ACK (42)

Saves 84 bytes, 1 round trip

Wednesday, May 15, 13

What We Learned - TCP

What We Learned - TCP

What We Learned - TCP

* Don’t Nagle!

Wednesday, May 15, 13

What We Learned - TCP

* Don’t Nagle!

e Again, understand what your traffic is doing

Wednesday, May 15, 13

What We Learned - TCP

* Don’t Nagle!
e Again, understand what your traffic is doing

e Buffer and make one syscall instead of multiple

Wednesday, May 15, 13

What We Learned - TCP

* Don’t Nagle!
e Again, understand what your traffic is doing

e Buffer and make one syscall instead of multiple

e High-throughput RPC mechanisms disable it explicitly

Wednesday, May 15, 13

What We Learned - TCP

* Don’t Nagle!
e Again, understand what your traffic is doing

e Buffer and make one syscall instead of multiple

e High-throughput RPC mechanisms disable it explicitly

e Better mechanisms not accessible to JVM directly

Wednesday, May 15, 13

What We Learned - TCP

* Don’t Nagle!
e Again, understand what your traffic is doing

e Buffer and make one syscall instead of multiple

e High-throughput RPC mechanisms disable it explicitly

e Better mechanisms not accessible to JVM directly

e See also:

Wednesday, May 15, 13

What We Learned - TCP

* Don’t Nagle!
e Again, understand what your traffic is doing

e Buffer and make one syscall instead of multiple

e High-throughput RPC mechanisms disable it explicitly
e Better mechanisms not accessible to JVM directly

e See also:

e http://www.evanjones.ca/software/java-
bytebuffers.html

Wednesday, May 15, 13

http://www.evanjones.ca/software/java-bytebuffers.html
http://www.evanjones.ca/software/java-bytebuffers.html
http://www.evanjones.ca/software/java-bytebuffers.html
http://www.evanjones.ca/software/java-bytebuffers.html

What We Learned - TCP

* Don’t Nagle!
e Again, understand what your traffic is doing

e Buffer and make one syscall instead of multiple

e High-throughput RPC mechanisms disable it explicitly
e Better mechanisms not accessible to JVM directly

e See also:

e http://www.evanjones.ca/software/java-
bytebuffers.html

+ http://blog.boundary.com/2012/05/02/know-a- demj
nagles-algorithm-and-you/ ‘.

Wednesday, May 15, 13

http://www.evanjones.ca/software/java-bytebuffers.html
http://www.evanjones.ca/software/java-bytebuffers.html
http://www.evanjones.ca/software/java-bytebuffers.html
http://www.evanjones.ca/software/java-bytebuffers.html
http://blog.boundary.com/2012/05/02/know-a-delay-nagles-algorithm-and-you/
http://blog.boundary.com/2012/05/02/know-a-delay-nagles-algorithm-and-you/
http://blog.boundary.com/2012/05/02/know-a-delay-nagles-algorithm-and-you/
http://blog.boundary.com/2012/05/02/know-a-delay-nagles-algorithm-and-you/

About UDP...

About UDP...

About UDP...

* Generally to be avoided

Wednesday, May 15, 13

About UDP...

* Generally to be avoided

e Great for small unimportant data like memcache operations
at extreme scale

Wednesday, May 15, 13

About UDP...

* Generally to be avoided

e Great for small unimportant data like memcache operations
at extreme scale

e Bad for RPC when you care about knowing if your request
was handled

Wednesday, May 15, 13

About UDP...

* Generally to be avoided

e Great for small unimportant data like memcache operations
at extreme scale

e Bad for RPC when you care about knowing if your request
was handled

e Conditions where you most want your data are also the
most likely to cause your data to be dropped

Wednesday, May 15, 13

About SSL/TLS

About SSL/TLS

* Understand the consequences - complex, slow and
expensive, especially for internal services

Wednesday, May 15, 13

About SSL/TLS

* Understand the consequences - complex, slow and
expensive, especially for internal services

e ~0.5K and 4 hops to secure the channel

Wednesday, May 15, 13

About SSL/TLS

* Understand the consequences - complex, slow and
expensive, especially for internal services

e ~0.5K and 4 hops to secure the channel

e 40 bytes overhead per frame

Wednesday, May 15, 13

About SSL/TLS

* Understand the consequences - complex, slow and
expensive, especially for internal services

e ~0.5K and 4 hops to secure the channel
e 40 bytes overhead per frame

e 38.1MB overhead for every keep-alive sent to 1M devices

Wednesday, May 15, 13

About SSL/TLS

* Understand the consequences - complex, slow and
expensive, especially for internal services

e ~0.5K and 4 hops to secure the channel
e 40 bytes overhead per frame

e 38.1MB overhead for every keep-alive sent to 1M devices

Wednesday, May 15, 13

http://netsekure.org/2010/03/tls-overhead/
http://netsekure.org/2010/03/tls-overhead/

We |earned About Carriers

Wednesday, May 15, 13

We |earned About Carriers

* Data plans are like gym memberships

Wednesday, May 15, 13

We |earned About Carriers

* Data plans are like gym memberships

* Aggressively cull idle stream connections

Wednesday, May 15, 13

We |earned About Carriers

* Data plans are like gym memberships
* Aggressively cull idle stream connections

 Don’t like TCP keepalives

Wednesday, May 15, 13

We |earned About Carriers

* Data plans are like gym memberships

* Aggressively cull idle stream connections
e Don’t like TCP keepalives

* Don’t like UDP

Wednesday, May 15, 13

We |earned About Carriers

* Data plans are like gym memberships

* Aggressively cull idle stream connections

e Don’t like TCP keepalives

* Don’t like UDP

e Like to batch, delay or just drop FIN/FIN ACK/RS

Wednesday, May 15, 13

We |earned About Carriers

* Data plans are like gym memberships

* Aggressively cull idle stream connections

e Don’t like TCP keepalives

* Don’t like UDP

e Like to batch, delay or just drop FIN/FIN ACK/RS

* Move data through aggregators

Wednesday, May 15, 13

About Devices...

Wednesday, May 15, 13

About Devices...

e Small compute units that do exactly what you tell them to

Wednesday, May 15, 13

About Devices...

e Small compute units that do exactly what you tell them to

[ike phone home when you push to them...

Wednesday, May 15, 13

About Devices...

e Small compute units that do exactly what you tell them to
e | ike phone home when you push to them...

e 10M at a time...

Wednesday, May 15, 13

About Devices...

e Small compute units that do exactly what you tell them to
e | ike phone home when you push to them...
« 10M at a time...

e Causing...

Wednesday, May 15, 13

About Devices...

e Small compute units that do exactly what you tell them to

[ike phone home when you push to them...

e 10M at a time... The Berenstain Bears’
e Causing... Comﬁ”o% [

L -x@ lJan & Mlk
y, Berens+am

Wednesday, May 15, 13

About Devices...

Wednesday, May 15, 13

About Devices...

e Herds can happen for many of reasons:

Wednesday, May 15, 13

About Devices...

e Herds can happen for many of reasons:

e Network events

Wednesday, May 15, 13

About Devices...

e Herds can happen for many of reasons:
* Network events

* Android iImprecise timer

Wednesday, May 15, 13

Aout Devices...

e Herds can happen for many of reasons:
* Network events

* Android iImprecise timer

Neon Lookups Per Second

w
-

B oo N

w

©
c
o
o
o)
v
—
8]
o
v
+
v
o)
2
o
8]
e

N B OO ON

O O O O O H H H H H N NN NN

oON & OV O

Wednesday, May 15, 13

About Devices...

Wednesday, May 15, 13

About Devices...

* By virtue of being a mobile device, they move around a |ot

Wednesday, May 15, 13

About Devices...

* By virtue of being a mobile device, they move around a |ot

* \When they move, they often change IP addresses

Wednesday, May 15, 13

About Devices...

* By virtue of being a mobile device, they move around a |ot
* \When they move, they often change IP addresses

e New cell tower

Wednesday, May 15, 13

About Devices...

* By virtue of being a mobile device, they move around a |ot
* \When they move, they often change IP addresses
* New cell tower

e Change connectivity - 4G -> 3G, 3G -> WiFI, etc.

Wednesday, May 15, 13

About Devices...

* By virtue of being a mobile device, they move around a |ot
* \When they move, they often change IP addresses

* New cell tower

e Change connectivity - 4G -> 3G, 3G -> WiFI, etc.

* \When they change IP addresses, they need to reconnect
TCP sockets

Wednesday, May 15, 13

About Devices...

* By virtue of being a mobile device, they move around a |ot
* \When they move, they often change IP addresses

* New cell tower

e Change connectivity - 4G -> 3G, 3G -> WiFI, etc.

* \When they change IP addresses, they need to reconnect
TCP sockets

 Sometimes they are kind enough to let us know

Wednesday, May 15, 13

About Devices...

* By virtue of being a mobile device, they move around a |ot
* \When they move, they often change IP addresses

* New cell tower

e Change connectivity - 4G -> 3G, 3G -> WiFI, etc.

* \When they change IP addresses, they need to reconnect
TCP sockets

 Sometimes they are kind enough to let us know

e Those reconnections are expensive for us and the devices

Wednesday, May 15, 13

We Learned About EC?

Wednesday, May 15, 13

We Learned About EC?

e EC2 is a great jumping-off point

Wednesday, May 15, 13

We Learned About EC?

e EC2 is a great jumping-off point

» Scaling vertically is very expensive

Wednesday, May 15, 13

We Learned About EC?

e EC2 is a great jumping-off point
» Scaling vertically is very expensive

e |ike Carriers, EC2 networking is fond of holding on to TCP
teardown sequence packets

Wednesday, May 15, 13

We Learned About EC?

e EC2 is a great jumping-off point
» Scaling vertically is very expensive

e |ike Carriers, EC2 networking is fond of holding on to TCP
teardown sequence packets

* VNICs obfuscate important data when you care about 1M
connections

Wednesday, May 15, 13

We Learned About EC?

e EC2 is a great jumping-off point
» Scaling vertically is very expensive

e |ike Carriers, EC2 networking is fond of holding on to TCP
teardown sequence packets

* VNICs obfuscate important data when you care about 1M
connections

e Great for surge capacity

Wednesday, May 15, 13

We Learned About EC?

e EC2 is a great jumping-off point
» Scaling vertically is very expensive

e |ike Carriers, EC2 networking is fond of holding on to TCP
teardown sequence packets

* VNICs obfuscate important data when you care about 1M
connections

e Great for surge capacity

* Don’t split services into the virtual domain

Wednesday, May 15, 13

Lessons Learned - Falling Well

e Scale vertically and horizontally
e Scale vertically but remember...

* \We can reliably take one Java process up to 990K open
connections

* \What happens when that one process fails?

* \What happens when you need to do maintenance”?

Wednesday, May 15, 13

* Urban Airship http://urbanairship.com/

 Me @eonnen on Twitter or erik@Qurbanairship.com

* \We're hiring! http://urbanairship.com/company/jobs/

Wednesday, May 15, 13

http://urbanairship.com/
http://urbanairship.com/
mailto:erik@urbanairship.com
mailto:erik@urbanairship.com
http://urbanairship.com/company/jobs/
http://urbanairship.com/company/jobs/

Additional UA Reading

Additional UA Reading

* [nfrastructure Improvements - http://urbanairship.com/
blog/2012/05/17/scaling-urban-airships-messaging-
infrastructure-to-light-up-a-stadium-in-one-second/

Wednesday, May 15, 13

http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/

Additional UA Reading

* [nfrastructure Improvements - http://urbanairship.com/
blog/2012/05/17/scaling-urban-airships-messaging-
infrastructure-to-light-up-a-stadium-in-one-second/

e C500K - http://urbanairship.com/blog/2010/08/24/c500k-
in-action-at-urban-airship/

Wednesday, May 15, 13

http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2012/05/17/scaling-urban-airships-messaging-infrastructure-to-light-up-a-stadium-in-one-second/
http://urbanairship.com/blog/2010/08/24/c500k-in-action-at-urban-airship/
http://urbanairship.com/blog/2010/08/24/c500k-in-action-at-urban-airship/
http://urbanairship.com/blog/2010/08/24/c500k-in-action-at-urban-airship/
http://urbanairship.com/blog/2010/08/24/c500k-in-action-at-urban-airship/

