
dog food
in the Gradle Team

About Me

Szczepan Faber

lives in Krakow/Poland

supports TS Podbeskidzie (sadly)

lead at Mockito

core dev at Gradle

Gradle
What do you know about Gradle?

very compelling feature set

very active development

always open source and free

About this talk

shows how the Gradle Team dogfoods the automation

inspires

impresses (hopefully ;)

Inside Gradle

~ 6 very distributed full time engineers

Frequent, regular releases (~ 6 weeks)

~500k LOC (Java, Groovy, includes all tests & infrastructure code)

~2k test classes

~40 modules

Contains documentation and release notes

Automation
Critical for high performing teams.

Allows us to achieve high quality

Continuous investment

Persistent problem

Everyone’s responsibility

Development
Automating the day-to-day

IDE/Editor

Automate the “import” process

Prerequisites are java & IDE but no Gradle (thanks to Wrapper)

Provide a consistent setup

Make it possible to run frequent tasks via the IDE

Testing

Unit

we are fond of tests, TDD and high coverage

groovy tests (spock) for java code

Integration testing

every integration test can be ran in different modes:

embedded (speed, fast dev cycles, easy debugging)

forking (slower but more realistic)

daemon (excellent stress test and coverage test for the daemon)

parallel (excellent stress test and coverage test for parallel feature)

Integration testing

cross version integration tests (backward compatibility)

run test against a set of different versions of a 3rd party tool (e.g. groovy
compilation)

run test against a set of Gradle versions

full suite VS recent version only

tooling api cross version tests (backward and forward compatibility)

consumer & provider

Testing

Distribution

Performance

Testable documentation

Automatically tested documentation

samples (in user guide or in distribution)

evaluation

running arbitrary tasks and comparison of output

using samples content for integration tests

build script snippets in the javadoc - evaluation (dsl reference, javadocs)

java code snippets in the javadoc - compilation attempt (javadocs)

Documentation

Automatically deployed documentation

User guide

DSL reference

API reference

Release notes

Code Quality

Ensure public API is documented

License headers

Cyclical package dependencies

Static analysis (Checkstyle & Codenarc)

Build pipeline

Runs on every push

Identical on both branches (master & release)

TeamCity

Pipeline structure

Static analysis

Quick, less accurate tests (small number of platforms)

Build production like distributions

Platform tests

Execution mode tests

Performance test

Promote

Reusing binaries

Production like binaries built at start of pipeline

CI server pushes binaries to downstream builds

Release cycle
A cycle is ~ 6 weeks.

Move to release branch after ~ 4 weeks

Plan new release ~ 4 weeks

Promote RC ~ 5 weeks

Promote final (end)

Merge release branch back to master (final)

Promotion

Separate “build” for promotion

Automatically checks out specific revision

Programatically rebuilds Gradle

Imposes the version number

Triggered by 1 click @ CI server

Delivery

Build, smoke test

Decorate docs with Google Analytics JS

Upload to (some bits)repo.gradle.org

Upload dists and decorated docs to Amazon S3

Checkout website repo, update data, push

Trigger pull new docs

Smoke test delivered distributions

Send notification email to team

Finish with manual processes

Gradle.org

Data driven

Push deploy

Updated by non technical staff

Post “release” test

Defect tracking/planning
Three levels:

forums.gradle.org -> entry point

issues.gradle.org -> acknowledged defects

Pivotal Labs -> team planning

Automated move/sync data between systems.

Forums
Some interesting automations/tweaks:

Markdown/syntax highlighting

Issue number linking

Documentation linking

News

Roadmap

Thanks!

gradle.org

gradleware.com

Questions?

