
Atomic Scala
An Introductory Tutorial

Bruce Eckel
from the book by

Bruce Eckel & Dianne marsh

The Book

Small chapters give a sense of
accomplishment

Instead of a "deep dive," just enough to
cover a single concept

The smallest possible amount: "atom"
Only what you need to know for the next

atom
No chapter numbers to make them easy to

shift around
Book can be an intro for a dedicated learner
Designed as an ebook first, print book later

•

•

•
•

•

•
•

Why another language?

Parallelism is too hard -- threads and locks are
basically impossible to get right (Heisenbugs)

Functional Programming Languages are often
too strange and restrictive

Object/Functional Hybrid
More familiar syntax
More succinct: less code, more productivity

(> factor of two less code)
Runs on JVM, interoperable with Java
Statically typed, but with type inference
Powerful & more consistent syntax
Fundamentally redesigned

•

•

•
o
o

•
•
•
•

More intros

My blog posts:
Scala: The Static Language that Feels

Dynamic
Scala, Patterns and The Perl Effect
Is Scala Only for Computer Scientists?

Martin Odersky:
Scala: An Introduction
Odersky Explains Shared-Memory

Concurrency

•
o

o

o

•
o

o

Comments
47 * 42 // Perform multiplication
47 + 42

47 + 42 /* A multiline comment
doesn’t care
about newlines */

Scripting
// ScriptDemo.scala
println("Hello, Scala!")

> scala ScriptDemo.scala

Hello, Scala!

Values and Data Types
val name:type = initialization

(Values.scala)

Variables
var name:type = initialization

Type Inference
scala> val n = 1 + 1.2
n: Double = 2.2

Expressions
A statement changes state.
An expression expresses.

(Expressions.scala)

scala> val e = println(5)
e: Unit = ()

scala> val f = {}
f: Unit = ()

Conditional Expressions
(If.scala, If2.scala, If3.scala, If4.scala, If5.scala)

For Loops
(For.scala)

Objects
scala> val r = Range(0, 10)
scala> r.(PRESS THE TAB KEY)

ScalaDoc
http://www.scala-lang.org/api/current/index.html

Vectors
(VectorsAndObjects.scala)

