

P864 A PHASE 1 STUDY OF BELANTAMAB MAFODOTIN IN COMBINATION WITH STANDARD OF CARE IN NEWLY DIAGNOSED MULTIPLE MYELOMA: AN INTERIM ANALYSIS OF DREAMM-9

Topic: 14. Myeloma and other monoclonal gammopathies - Clinical

Saad Z Usmani^{*1}, Michał Mielnik², Ja Min Byun³, Aránzazu Alonso Alonso⁴, Al-Ola Abdallah⁵, Mamta Garg⁶, Hang Quach⁷, Chang-Ki Min⁸, Wojciech Janowski⁹, Enrique Maria Ocio San Miguel¹⁰, Katja Weisel¹¹, Albert Oriol¹², Irwindeep Sandhu¹³, Paula Rodríguez-Otero¹⁴, Karthik Ramasamy¹⁵, Jacqueline Egger¹⁶, Danaè Williams, Jie Ma, Morrys Kaisermann, Marek Hus²

¹Memorial Sloan Kettering Cancer Center, New York City, United States; ²Medical University Of Lublin, Lublin, Poland; ³Seoul National University Hospital, Seoul, Korea, Rep. Of South; ⁴Hospital Quirón Madrid, Madrid, Spain; ⁵University Of Kansas Medical Center, Us Myeloma Research Innovations Research Collaborative (Usmirc), Westwood, United States; ⁶Leicester Royal Infirmary, Leicester, United Kingdom; ⁷St Vincent's Hospital Melbourne, University Of Melbourne, Melbourne, Australia; ⁸The Catholic University Of Korea Seoul St. Mary's Hospital, Seoul, Korea, Rep. Of South; ⁹Calvary Mater Newcastle, Newcastle, Australia; ¹⁰Hospital Universitario Marqués De Valdecilla (Idival), Universidad De Cantabria, Santander, Spain; ¹¹University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ¹²Institut Català D'oncologia And Institut Josep Carreras - Hospital Universitari Germans Trias I Pujol (Hugtp), Badalona, Spain; ¹³University Of Alberta, Alberta, Canada; ¹⁴Department Of Hematology, Clínica Universidad De Navarra, Pamplona, Spain; ¹⁵Churchill Hospital, Oxford, United Kingdom; ¹⁶Gsk, Herfordshire, United Kingdom

Background:

Belantamab mafodotin (belamaf) is a B-cell maturation antigen-binding antibody-drug conjugate that eliminates myeloma cells via direct cell killing and anti-myeloma immune responses. DREAMM-9 (NCT04091126) is an ongoing Phase 1, randomized, dose and schedule evaluation study. Herein, we report updated interim-analysis data.

Aims:

DREAMM-9 aims to evaluate belamaf plus bortezomib, lenalidomide, and dexamethasone (VRd) in adult patients with transplant-ineligible newly diagnosed multiple myeloma and to establish the recommended dose for future development of belamaf combination therapies in the first-line setting.

Methods:

Belamaf dose cohorts are shown in the **Table**. VRd was given every 3 weeks until cycle 8, and Rd every 4 weeks thereafter (Q3/4W). Following safety data from Cohorts 2–5, Cohorts 6–7 were opened in parallel (randomized 1:1) and have shorter follow-up (**Table**). Safety was the primary endpoint; efficacy and tolerability were secondary endpoints. Minimal residual disease (MRD) was assessed by next-generation sequencing (10⁻⁵).

Results:

As of data cutoff (October 20, 2022), 93 patients were treated across Cohorts 1–7. Median age (range) was 73 (51–88) years, 55% of patients were male, and 84% were white. The most commonly reported non-ocular adverse events (AEs) across all cohorts were thrombocytopenia (46%), constipation (36%), diarrhea (34%), and peripheral sensory neuropathy (31%). Overall, belamaf-related Grade ≥3 AEs occurred in 35% of patients and led to belamaf dose reductions in 7% and dose delays in 63% of all treated patients. Grade ≥3 ocular AEs (keratopathy and visual acuity [KVA] scale) occurred in 53% of all patients and led to dose reductions in 12% and dose delays in 52% of overall patients. Fatal AEs occurred in 7 patients, all unrelated to study treatment. Efficacy results and ocular AEs are summarized in the **Table**: 100% of patients responded in Cohort 1 (1.9 mg/kg Q3/4W) and Cohort 3 (1.9 mg/kg Q6/8W). Median time to very good partial response or better (≥VGPR) ranged from 2.1 to 3.1 months across

Copyright Information: (Online) ISSN: 2572-9241

© 2023 the Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the European Hematology Association. This is an open access Abstract Book distributed under the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) which allows third parties to download the articles and share them with others as long as they credit the author and the Abstract Book, but they cannot change the content in any way or use them commercially.

Abstract Book Citations: Authors, Title, HemaSphere, 2023;7(S3):pages. The individual abstract DOIs can be found at https://journals.lww.com/hemasphere/pages/default.aspx.

Disclaimer: Articles published in the journal HemaSphere exclusively reflect the opinions of the authors. The authors are responsible for all content in their abstracts including accuracy of the facts, statements, citing resources, etc.

HemaSphere

cohorts. Highest MRD negativity rates (≥VGPR) were seen in Cohort 1 (83%) and Cohort 3 (67%).

Summary/Conclusion:

This updated interim analysis demonstrates that belamaf plus VRd has no new safety signals and provides early and deep anti-myeloma responses in patients with transplant-ineligible newly diagnosed multiple myeloma, with high MRD negativity rates.

Funding:

GSK (Study 209664); drug linker technology licensed from Seagen Inc.; monoclonal antibody produced using POTELLIGENT Technology licensed from BioWa.

This abstract was previously submitted to the American Society of Clinical Oncology (ASCO) Annual Meeting, June 2–6, 2023, and is submitted on behalf of the original authors with their permission. ©2023 American Society of Clinical Oncology, Inc. Reused with permission. All rights reserved.

Table. Efficacy and Safety Summary

Coho rts	1 **1.9 mg/kg Q3/4W n=12	2 **1.4 mg/kg Q6/8W n=12	3 **1.9 mg/kg Q6/8W n=12	4 **1.0 mg/kg Q3/4W n=15*	5 **1.4 mg/kg Q3/4W n=13	6 1.4 mg/kg then 1.0 mg/kg Q9/12W n=14	7 1.9 mg/kg then 1.4 mg/kg Q9/12W n=15*
Grad e ≥3 ocular AEs (KVA; N=91), %	83	58	92	57	85	7	0
Medi an follow -up, months	27.6	16.0	16.2	15.3	15.2	2.5	2.0
ORR, % **≥CR VGPR PR MR/S D	100 75 17 8 0	92 83 8 0 8	100 83 17 0	80 53 20 7	92 62 23 8 0	79 14 21 43 7	53727207
MRD							

Copyright Information: (Online) ISSN: 2572-9241

© 2023 the Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the European Hematology Association. This is an open access Abstract Book distributed under the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) which allows third parties to download the articles and share them with others as long as they credit the author and the Abstract Book, but they cannot change the content in any way or use them commercially.

Abstract Book Citations: Authors, Title, HemaSphere, 2023;7(S3):pages. The individual abstract DOIs can be found at https://journals.lww.com/hemasphere/pages/default.aspx.

Disclaimer: Articles published in the journal HemaSphere exclusively reflect the opinions of the authors. The authors are responsible for all content in their abstracts including accuracy of the facts, statements, citing resources, etc.

HemaSphere

[-], %	75	33	58	33	46	7	0 _
**≥CR	83 1	33 2	67 3	33 4	46 5	6 14 1.4 mg/kg	7 7 1.9 mg/kg
≥VGP R Coho rts	**1.9	**1.4 mg/kg	**1.9	**1.0	**1.4	then	then
*Safe ty popula tion	mg/kg Q3/4W	Q6/8W	mg/kg Q6/8W	mg/kg Q3/4W	mg/kg Q3/4W	1.0 mg/kg	1.4 mg/kg
n=14. AEs,	n=12	n=12	n=12	n=15 *	n=13	Q9/12W	Q9/12W
advers e events ;						n=14	n=15 *
CR, comple te							
respon se; KVA,							
kerato pathy and							
visual							
acuity scale; MR,							
minor respon se;							
MRD, minima I							
residu al diseas e;							
ORR, overal I							
respon se							
rate; OS, overal I							
surviv al; PR, partia I							
respon se; Q, every;							
SD, stable diseas e;							
VGPR,							
very good partia l							
respon se; W, weeks.							

Copyright Information: (Online) ISSN: 2572-9241

© 2023 the Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the European Hematology Association. This is an open access Abstract Book distributed under the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) which allows third parties to download the articles and share them with others as long as they credit the author and the Abstract Book, but they cannot change the content in any way or use them commercially.

Abstract Book Citations: Authors, Title, HemaSphere, 2023;7(S3):pages. The individual abstract DOIs can be found at https://journals.lww.com/hemasphere/pages/default.aspx.

Disclaimer: Articles published in the journal HemaSphere exclusively reflect the opinions of the authors. The authors are responsible for all content in their abstracts including accuracy of the facts, statements, citing resources, etc.