Abstract Number: 1073/O079

Serum Lipidomics and Disease Activity in Pediatric-Onset Multiple Sclerosis: a nation-wide prospective cohort study

1 Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States. 2 West Coast Metabolomics Center, University of California Davis, Davis, United States. 3 Division of Neuroimmunology, Department of Neurology, Johns Hopkins University, Baltimore, United States. 4 State University of New York, Buffalo, United States. 5 Department of Neuroimmunology, Department of Neurology, Boston Children’s Hospital, Boston, United States. 6 Department of Neurology, Boston Children’s Hospital, Boston, United States. 7 Washington University in St. Louis, St. Louis, United States. 8 Cleveland Clinic, Cleveland, United States. 9 Division of Neuroimmunology and Neurovirology, University of Utah, Salt Lake City, United States. 10 Partners Pediatric Multiple Sclerosis Center, Massachusetts General Hospital, Boston, United States. 11 Mayo Clinic Pediatric Multiple Sclerosis Center, Mayo Clinic, Rochester, United States. 12 Texas Children’s Hospital, Baylor College of Medicine, Houston, United States. 13 Children’s Hospital Colorado, University of Colorado, Aurora, United States. 14 Department of Neurology, NYU Langone Health, New York, United States. 15 Department of Integrative Biology, University of California, Berkeley, Berkeley, United States. 16 University of Utah, Salt Lake City, United States. 17 United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, United States. 18 Department of Nutrition, University of California Davis, Davis, United States

Introduction:

Alterations in lipid metabolism and their effects on immune cells have been reported in relapsing MS. However, only a few metabolic pathways have been investigated for their relationship with MS course.

Objectives/Aims:

To evaluate the association between plasma lipids and subsequent disease activity in a prospective cohort of pediatric-onset MS (POMS) patients.

Methods:

Plasma samples were collected from POMS cases within 4 years of disease onset from 16 sites in the US Network of Pediatric MS Centers. Lipids and lipid mediators were assessed using untargeted and targeted liquid chromatography mass spectrometry. The association between clinical (time to first relapse, time to sustained EDSS progression, relapse count) and radiological outcomes (count of MRIs ≥ 1 new T2 lesion; or Gd+ lesion) with each metabolite (median dichotomization) was estimated using negative binomial regression offset by follow-up time and cox proportional hazards models. Baseline MRI was ±6 months from sample collection. Adjustment by sex, age, race, biological mother’s highest degree, DMT usage, and number of MRIs (radiological outcomes) was performed. False discovery rate threshold was set at 0.2.

Results:

446 POMS patients (65% female, 67% White) were included. At sample collection, 68% were treatment-naïve,
median EDSS was 1.5 (IQR 1.0-2.0), and median follow-up time was 3.2 years (IQR 1.5-5.2) after sample collection. A total of 2,104 metabolites were measured. Among those, 489 were chemically characterized, 16 of which were associated with subsequent disease activity. Of note, w-3 polyunsaturated fatty acids (PUFA) and their derivatives (docosahexaenoic acid, eicosapentaenoic acid (EPA), and 12-HEPE) were consistently associated with protective effects on clinical and MRI outcomes. For example, high EPA levels were associated with a 36% decrease in the incidence of T2 lesions (IRR 0.64, 95%CI 0.55-0.76, q<0.001) and 42% decrease in the risk of relapse (HR 0.58, 95%CI 0.45-0.74, q=0.04). Interestingly, w-6 PUFAs derivatives were associated with an increased risk of MS activity (10-HODE, 12-HODE, 9,10-DiHOME, 9,12,13-TriHOME), except arachidonic acid, which showed consistent protective effects. WGCNA clustering results will be presented.

Conclusion:

Several PUFAs and their metabolites were associated with multiple clinical and MRI disease activity outcomes. Our results suggest that w-3 PUFAs and their derivatives, whose levels rely exclusively on dietary ingestion of a-linoleic acid, are associated with a lower risk of MS activity.

Disclosures:

VAS, KB, JC, JH, DCL, AWA, SSM, LB, TL, JT, and JN have no conflicts of interest to report. PB has received honoraria from Genentech and EMD-Serono, grants from Genentech, EMD-Serono, GSK and Amylyx pharmaceuticals. AV has received Fellowship Grant from Biogen.

BWG served as a consultant for Biogen, EMD Serono, Novartis, Genentech, Celgene/Bristol Meyers Squibb, Sanofi Genzyme, Bayer, Janssen, Labcorp and Horizon. She served in speaker bureau for Biogen. BWG also has received grant/research support from the agencies listed in the previous sentence. She serves in the editorial board for BMJ Neurology, Children, CNS Drugs, MS International and Frontiers Epidemiology.

JG has received research support from NMSS, Octave, Biogen, EMD Serono, Novartis, ATARA Biotherapeutics, and ABM. She has served on advisory boards for TG therapeutics and a Horizon and a pediatric clinical trial steering committee for Novartis. She has consulted for Google. LAB has received funding for research unrelated to this work for Biogen, Alexion and Roche sponsored clinical trials, Shore grant, ROHHAD Fight, Inc, and travel funds from the National MS Society, CDC and NIH. LAB has also acted as a paid consultant to the national Vaccine Injury Compensation Program and Massachusetts Department of Public Health. JR has received research funding from NMSS, NIH, Biogen and VA.

TS has received speakers fees from Cycle Pharmaceuticals and Hoffman La Roche. She participates in research funded by Roche and the National MS Society. TC has consulted for Genentech-Roche and Novartis. She has received research support from Bristol Myers Squibb, Genentech-Roche, Novartis, Sanofi and Tiziana Life Sciences.

LK has received research or programmatic funding, or has received compensation for consulting, speaking, travel and meal allowances, or serving on DSMB committees from Eisai, Peer View, Gerson Lehrman, WebMD, CME Outfitters, General Dynamics Information, At the Limits, Novartis, Biogen, F. Hoffman/LaRoche. She also receives royalties for use of the Fatigue Severity Scale by various biopharmaceutical entities. CC has received funding for research unrelated to this work from Hoffmann La Roche Ltd. EW has participated in multicenter clinical trials funded by Genentech, Alexion and Biogen. She has current support from the NIH, NMSS, DoD, PCORI, CMSC and Race to Erase MS. She does not receive honorarium from companies.

Funding: National Institute of Neurologic Disorders and Stroke: R01NS117541 (PI Waubant), National Multiple Sclerosis Society: SI-2110-38420 (PI Casper) and RG4861A3/1 (PI Waubant).