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Abstract: 

This document is deliverable D3.2 "The resilience metrics for the European ATM system", which as described in the 
DoW is the third deliverable of WP3, with 11 person-months involved in its corresponding tasks. The original report 
delivery date was T0+9 which corresponded to September 2013, however, as agreed with the project officer, D3.2 
was delayed until December 2013 in order to wait until D3.1 Multilayer representation was concluded, which 
delivery date was 1st September 2013. The following deliverable D3.2 describes the Resilience Metrics of the ATM 
system within Resilience2050 project. 
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1 INTRODUCTION 

1.1 General Introduction 

Resilience2050.eu is a collaborative project funded through the FP7 AAT Call 5, topic AAT.2012.6.2-4: Identifying 
new design principles fostering safety, agility and resilience for ATM. 

The project aims to: 

·    Develop adequate mathematical modelling and analysis approaches to support systematic analysis of resilience 
in ATM scenarios, taking into account the different ATM disturbances that can take place in the European airspace. 

·    Develop metrics to systematically define resilience, addressing the concepts  of “Responding”, “Monitoring”, 
“Learning” and “Anticipating”. This work will result in a Resilience Analysis Framework (RAF 2050), to enable the 
definition of new ATM design principles fostering safety, agility and especially resilience. 

·    Provide an extensive overview of human contributions to resilience in current ATM. 

The project is carried out by an international consortium composed of: The Innaxis Research Institute, (Project 
Coordinator, Spain), Deutsches Zentrum für Luft- und Raumfahrt e.V (DLR, Germany),  Universidad Politécnica de 
Madrid (UPM, Spain), Nationaal Lucht- en Ruimtevaartlaboratorium (NLR, Netherlands), Istanbul Teknik 
Üniversitesi (ITU, Turkey), Devlet Hava Meydanlari Isletmesi Genel Müdürlügü (DHMI, Turkey) and King’s College 
London (KCL, UK). 

The project was launched on the 1st of June, 2012 and will last 36 months. 

The document structure presents, through a top-down approach, the top level Resilience2050 project information, 
the role of Work Package 3 within the project and, finally, the work performed under task D3.2, regarding the 
resilience metrics in the European ATM system. Concretely: 

• Section 0 consists of the title, cover page, record of revisions, abstract and table of contents. 
• Section 1 is the overall introduction of deliverable D3.2, including general information about the 

Resilience2050 project and the current structure of the deliverable with brief explanations of each section. 
• Taking into account that D3.2 is the core report of WP3, section 2 introduces the main goals of WP3 in 

the Resilience2050 project. It also includes a description of D3.2 in relation to the WP3 framework and the 
approach and scope within this work package, in addition to the explanation of the links between the rest 
of the deliverables in WP3 (D3.1 and D3.3). The information flow in the WPs and deliverables is also 
depicted in this section 2. 

• Section 3 describes the data preparation process that was required prior to the resilience metrics building. 
Firstly, the different inputs from D2.2 and its influence regarding the disturbances are described. Different 
sub-sections for each one of the process steps are included. The final output of this data preparation 
process were the CSV files named Analysis 4, Analysis 5 and Analysis 6. It has been paid particular 
attention to a full alignment with the Resilience mulitlayer representation (D3.1), the results from 
disturbances identification in WP2 and the future research in WP4 and WP5 

• Section 4 consists of the description of the Resilience Metrics. Hence, it is the crucial section of the 
deliverable and merge quantitative and qualitative analysis of this new property of the ATM system. It 
covers the mathematical-technical tasks that were required in order to achieve the Resilience metrics , and 
secondly provides and describes the Resilience Metrics by themselves per airport(s) and per kind of 
disturbance. 

• Section 5 describes the causality perspective analysis that has been done in a parallel fashion to the 
previous sections.  Meanwhile the resilience metrics proposed in section 4 are centred on the analysis of 
disturbances and their propagation through the network, this section goes one step ahead building the 
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European airport network structure from a causality perspective.  A Granger causality test with the top 50 
airports and their relationships is included. 

• Annex I provides the acronym list. 
• Annex II consists of the references compilation. 

1.2 Resilience Metrics introduction (and comparison with current reports and metrics etc) 

The Single European Sky legislation and research programme (SESAR) is based on providing solutions which 
performance enhancement can be measure through the right performance indicators.  

Although those performance indicators can be defined conceptually, the difficulties of gathering the data, can 
easily lead to a measurement paradigm that is less than optimal. For instance, data might not be available or 
complete, the data needed to develop the metric might not arrive concurrently, be in the same format or event 
represent exactly the same phenomena. This leads to situations in which the accuracy of the data could be less 
than ideal and, therefore, requires that statistical error and uncertainty in the measurement are correctly tracked 
to ensure that, whenever a phenomena is observed, a correct understanding of the limitation of the observation is 
conceived. A performance-based air traffic management system is something to aim for and a powerful Data 
Science practice is what will enable it.  

This document presents a performance metric for the resilience of the system against disturbances, as defined in 
previous work in this project. This is the first study aimed at defining a performance metric that measures how the 
system reacts against those disturbances. The document presents a proof-of-concept for this metric, including not 
only the formal definition of the metric, but also a complete methodology on how to derive this metric for different 
disturbances across the air transport system in Europe. The methodology presented tracks the statistical error and 
the uncertainty in the performance measurement, which is key to ensure a scientific foundation of the work.  

Additionally, this document reports on the first figures for this metric for the available data. It is worth taken into 
account that the datasets used are available to Eurocontrol in a very stable format on a day-to-day basis, which 
would allow for the total automation of the performance system, increasing the usability of this metric. Some of 
the basic metrics used today to monitor the performance of the air transport system require, for instance, reliable 
input from airlines, which is frequently not obtained with the detailed needed. The "resilience" metric presented in 
this document could be perfectly computed as a close-to-real time paradigm, which will enable a permanent 
monitoring of the performance of the air transport system without additional input from stakeholders. 

This document focusses on reporting the methodology without looking into the scalability of the computation mad. 
In future deliverables, the team will report on a full solution on how to automate the computation of the 
"Resilience of Air Transport against disturbances" metric.  
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2 D3.2 in Resilience2050 project 

2.1 Resilience2050 and deliverable 3.2 

The key objective of the Resilience2050.eu project is to define, analytically, the concept of "resilience" meaning, 
within the context of Air Traffic Management. The sensible steps, as described in the DoW and some of them 
already achieved, are the following: 

• The first WP provided the theoretical framework, that leaded to a Resilience definition within the ATM 
domain. They were also explored other novel ideas such as the human role factor in the ATM resilience. 
Some learning about the proper terminology (Resilience, Robustness, Disturbances, Perturbations) were 
taken from other socio-technical domains. 

• WP2 tackled the data sets and data mining analyses that enabled, together with WP1, a deep study of 
which is the "Resilience level" in the current European ATM system for a each particular disturbance. They 
were also included some insight of the delay propagation patterns in the European ATM system. 

• The third WP and current should built a sensible structure where the Resilience concept could be 
represented, enabling afterwards to a full list of Resilience Metrics of the current ATM system 

 

2.2 Research steps and approach 

In the context previously explained, the current Deliverable 3.2 'The resilience metrics for the European ATM 
system', have firstly required input from WP2 D2.1: the specific information of the data sources involved in each 
layer. In order to provide the proper datasets, it was done the selection of the scenarios that would be significant 
for the resilience study. Finally, taking into account operational experience of the consortium partners and the 
most common delay causes (from Eurocontrol CODA and NOP), the scenarios depicted were: 

• Weather hazards (thunderstorm, rain, hail, snow, tornado, fog etc) 
• Bad visibility issues 
• Runway operations: runway configuration changes 
• Staffing problems: ATC strikes, illnesses etc 
• Capacity issues -in the macromodel: sectors, regulations etc- 

Once selected the scenarios and data sources, the input regarding the specific layers connections were taken from 
the resilience data mining tasks  done in WP2 D2.2.  In addition partial results of D2.3 achieved at the time of 
delivering this report have also been interesting as they enrich the multilayer connection perspective. 

WP3 "Development of new design principles" targets the analysis of the resilience of the current system.  WP3 
started with the already delivered D3.1: By means of the development of a "layered resilience assessment" 
metaphor, different elements (for instance, airports and their performance, disturbances) were organized in 
different logical “layers” or "views" of the system, and where relations between them were evaluated making use 
of WP2 outcomes. As a result, the abstract concept of resilience could be represented, measured and 
communicated, and different strategies to achieve an increased resilience in air transport operations could be 
developed. 

Due to the complexity of the Air Transport with hundreds of European stakeholders involved (ATC, airports, 
airlines), and the complex relations between them, Resilience2050 consortium made a huge effort in creating a 
multilayer representation in D3.1 simple enough to understand the delay propagation, and complex enough to 
provide interesting metrics of resilience as an ATM characteristic. In this context, D3.2 only differs to what was 
planned in D3.1 in two points: 

• The multiple disturbance matrix have not been delivered in D3.2, due to the low number of instances per 
airport and per disturbances' combinations, that matrix would lead to a lack of significant results/metrics. 
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• On the other hand, an extra analysis -not expected at D3.1 delivery but of a high scientifical interest- has 
been provided in a parallel fashion to the Resilience Metrics: the consortium have built the European 
airport network structure from a causality perspective.  A Granger causality test with the top 50 airports 
and their relationships has been included in section 5 of the current deliverable. 

 

Hence, visually summing up the general information flow that was required for prior to the creation of the current 
deliverable: 

 

WP1 WP2 WP3 

Resilience definition: 

Other socio-technical domains (D1.1) 

Human factor, disturbances (D1.2) 

ATM resilience, basic modelling approach (D1.3). (The full 
modelling approach connects D1.3, D3.1, D4.1 and D4.5 as 
explained above) 

Data mining 
exercises: 

Data sources and 
scenarios definition 
(D2.1) 

Data mining activities 
(D2.2) 

Resilience metrics: 

Multilayer 
representation (D3.1) 

Resilience Metrics -
current document- 

 

Looking at it the other way around, the current deliverable will be an input for the following research activities and 
deliverables: 

WP3 WP4 WP5 

New design principles (D3.3) Developing the model D4.1 Stress testing of new concept D5.i 

Further interrelations between other deliverables and WPs (2, 3, 4 and 5) has also been pointed out in the 
following figure. Ticks represent finished deliverables, and the ones with the figure highlighted in red represent 
those in which the consortium is currently focused on: 

 

 



 
D3.2 The Resilience metrics 

 

Page 9 of 32 
  

 

Figure 1 Interrelations between deliverables 

In conclusion, the data mining exercises run in the project provided strong guidance to build D3.2 in a way that 
this Resilience model and the corresponding metrics will be purely data-driven. The different data mining exercises 
exploited the different data sources available and this deliverable provides a set of resilience metrics that 
encompass those data mining activities and provide guidance which is the ATM performance of different 
stakeholders in terms of this "new" property. For the resilience metrics and the current deliverable it has also been 
taken into account future steps and deliverables, especially those involving the modelling. 
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3 Data preparation process 

In the current third section it is provided the information of the data preparation process that was required (as a 
preliminary task) to reach the Resilience Metrics. It has been covered and analysed which has been the inputs and 
outputs in each of the process stages, in addition to any relevant information that was considered significant. It 
has not been included the Python code used, however the pseudo-code and key ideas can be easily followed as 
the overall process has been documented in detail in the current deliverable. 

Meanwhile the initial input were the historical databases (flights and disturbances), the final outputs have been the 
CSV files, used afterwards in the different analyses and in the resilience metrics, 

As intermediate steps in the process 6 queries and 6 tables have been used. A specific chapter for each of them 
has been prepared covering: a full explanation of the material contained (tables, raws, files etc) and the data 
dealing tasks involved (filtering, merging, comparing etc) 

In brief, the data flow process has been the following: 

 

Figure 2: Data flow process 

 

3.1 Query 1 and Table 1 

Input: ALLFT+, METAR and AAC  headlines databases 
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Output: A table with the detected windows for each type of disturbance with the structure detailed below 

  
Description of the process: The objective for this table is to represent the periods where a disturbance took place 
in an airport. For this task, the implemented process analyses the appropriate database and extracts the starting 
and ending times where a disturbance occurred, as well as the affected airport by the disturbance. Since the 
multilayered model is only going to be applied to the selected airports, this table is going to be constructed for the 
selected airports described in WP 2.2. Depending on the type of the disturbance a different database has been 
selected and analysed, concretely: 
  
To analyse the change of configuration disturbance, the ALLFT+ is used to obtain the list of flights that took of for 
each of the selected airports and to detect when a change of configuration occurred (following the same process 
that was used in WP 2.2). To analyse the impact of the changes of configuration, it has been decided to select a 
one hour time window around each change of configuration detected.  
  
For the staffing disturbance, the AAC headlines is used to identify the days for each airport where a staffing 
problem took place (as was conducted in WP 2.2). Therefore, for each detected staffing problem, a time window of 
24h is generated in the table identifying not only the time window but also the affected airport. 
  
For all the weather-related disturbances the METAR dataset is analysed to extract the starting and ending time, i.e. 
the time window, where each weather phenomenon affected each airport.  
  
Finally, for the visibility disturbance, a similar step to the previous one has been followed with the exception that, 
in this case, the visibility information is analysed to detect the time windows where this value fell below 400m.  

The following table represents the structure that Table 1 contains. 

  

Airport Disturbance kind Start time stamp Ending time stamp 

LEMD 1 [(1=rain or directly rain) 13:25 13:55 

 

3.2 Query 2 and Table 2 

Input: Table1 
  
Output: Table 2, a filtered version of table1 
  
Description of the process: This table represents a filtered version of Table 1. Therefore, it presents the exactly 
same structure that was described in the previous section. The process starts by reading all the time windows of 
Table 1 and grouping them by the disturbance type. Then, for each time window of each disturbance, it verifies if 
there are no other time windows of another disturbance that overlap with the analysed time window. If no overlap 
is found, the record is stored in Table 2. Thus, this table represents the time periods where a disturbance affected 
an airport and no other disturbance occurred at the same time so we can be sure that the corresponding 
perturbance measures that we are going to analyse afterwards are only being affected by a single disturbance. 
There is only one exception to this filter and that is the case of the visibility and weather disturbances. Since these 
two disturbance are closely related (the visibility disturbance is caused by a weather phenomenon) we are not 
going to apply the filter whenever the time windows involved in an overlap belong to only these two types of 
disturbances. 
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Table structure: 

  

Airport Disturbance kind Start time stamp Ending time stamp 
LEMD 1 10:14 10:25 

 

3.3 Query 3 and Table 3 

Input: Table 2 and the ALLFT+ database 
  
Output: Table 3 
  
Description of the process: The objective of this table is to identify the flights that were affected by each 
disturbance included in Table 2 as well as some useful information for conducting the analysis of the multilayered 
model. Therefore, for constructing this table, the process reads each entry of table 2 that identifies a time window 
where a disturbance affected an airport, and uses this information to access the ALLFT+ database to extract the 
flights that were departing when the disturbance occurred. With this set of flights, the next step is to filter the 
flights that were not arriving at one of the selected airports (listed in WP 2.2). Then, for each flight, several fields 
that will help in the posterior analysis are retrieved, like, for example, the aircraftID, the registration number, the 
departure and arrival airports and the severity measure. The severity measure is only applied to the configuration 
change disturbance and the visibility disturbance which represents a quantitative value of the impact of the 
disturbance. In the case of visibility, this measure represents the visibility value (measured in meters) that 
occurred when the flight took place, whereas with the change of configuration disturbance, this measure 
represents how close the departure took place to the moment where the change happened. The structure of this 
table is as follows: 

  

Flight 
number 

Registration 
number 

departuring 
airport 

arriving 
airport Disturbance affecting Severity of disturbance 

affecting 

IBE1234 XXX LEMD LFCG disturbance 
identification X 

  

 

3.4 Query 4 and Table 4 

Input: Table 3 and the ALLFT+ database 
  
Output: Table 4 
  
Description of the process: This table extends Table 3 to include a perturbance measure that is going to be used 
to analyse the impact of each disturbance. Concretely, for this table, the measure that is calculated is the delay at 
the departure airports, computed as described in WP2.2, i.e., the difference between the estimated departure time 
included in the flight FTFM plan and the real time stamp stored in the radar points set, being both fields obtained 
from the ALLFT+ database. The new departure delay values together with the information contained in Table 3 
constitute the data of Table 4 represented in the following table structure. 
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Flight 
number 

Registration 
number 

departuring 
airport 

arriving 
airport 

Disturbance 
affecting 

Severity of 
disturbance affecting 

Departuring 
Delay 

IBE1234 XXX LEMD LFCG disturbance 
identification X 140 (seconds) 

 

3.5 Analysis 4 

Input: CSV file from Table 4 

Output: Resilience Metrics of the European ATM system 

The information of the analysis done is covered under the next section "Resilience Metrics" 

 

3.6 Query 5 and Table 5 

Input: Table 3 and the ALLFT+ database 
Output: Table 5 
  
Description of the process: Similarly to Table 4, Table 5 extends Table 3 to include a perturbance measure: the 
arrival delay. This measure is computed from the data contained in the ALLFT+ database as detailed in WP2.2, i.e., 
the difference between the estimated arrival time and the real arrival time stored in the radar points set. 
Therefore, the new table is constructed by adding the arrival delay measure to the fields contained in each record 
of Table 3. Since this table is going to be used to analyse the impact of each disturbance in the arrivals of the 
flights, a similar filtering process to the one followed with Table 2 is conducted but, in this case, it is centred 
around the arrival airports of the flights, i.e., the flights that arrive at an airport that was also being affected by a 
disturbance are discarded from the final dataset so that it only contains flights that were being affected by a 
disturbance at its departure. The following table represents the structure of Table 5. 

  

Flight 
number 

Registration 
number 

departuring 
airport 

arriving 
airport 

Original 
Disturbance 

affecting 

Severity of 
disturbance 

affecting 

Departuring 
Delay (at 
origin) 

Arrival Delay 
(At destination) 

IBE1234 XXX LEMD LFCG disturbance 
identification X 1400 (seconds) 800 (seconds) 

 

3.7 Analysis 5 

Input: CSV file from Table 5 

Output: Resilience Metrics of the European ATM system 
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The information of the analysis done is covered under the next section "Resilience Metrics" 

 

3.8 Query 6 and Table 6 

Input: Table 3 and the ALLFT+ database 
Output: Table 6 
  
Description of the process: The objective of this table is to contain the appropriate information to analyse how the 
impact of a disturbance affecting the flights departing from an airport propagates to the next leg that conduct the 
aircraft of the flights. Therefore, to construct this table, Table 3 is read (which contains the set of flights affected 
by all the proposed disturbances) and, for each flight, the next leg flight is obtained from the ALLFT+ database by 
obtaining the first of all the flights with the same registration mark field that departed from the same airport and 
after the Table 3 flight arrived.  
  
Similarly to the previous tables, these next leg flights are filtered to contain only the flights that arrived at one of 
the selected airports of WP 2.2 and that they were not being affected by any disturbance at their departure (since 
we are analysing the influence of a disturbance in the departure of the next leg flight we do not want to include 
next leg flights that were also being affected by another disturbance). As happened with Table 3, several fields 
that describe the flight are gathered from the ALLFT+ database as well as a perturbance measure: the delay at the 
departure of the next leg flights (computed as described in Table 4) to construct the data of Table 6 which 
structure is represented in the following table. 

  

  

Flight 
number 

Registration 
number 

departuring 
airport 

arriving 
airport 

Disturbance 
affecting 

Severity of 
disturbance 

affecting 

Departuring 
Delay (at 
origin) 

Arrival 
delay (at 

destination) 

Departuring 
Delay (At 

destination) 

IBE1234 XXX LEMD LFCG disturbance 
identification  X 1400 

(seconds) 
1000 
(seconds) 800 (seconds) 

 

3.9 Analysis 6 

Input: CSV file from Table 6 

Output: Resilience Metrics of the European ATM system 

The information of the analysis done is covered under the next section "Resilience Metrics" 



 
D3.2 The Resilience metrics 

 

Page 15 of 32 
 

4 Resilience Metrics 

The current section includes detail information on: 

• Data sources required from the data process preparation and basic explanation 
• Data representation guidelines 
• Data cleansing 
• Data fitting 
• Reference delay rate 
• Disturbance effect 
• The Resilience graph 
• The error and confidence rate 
• The global resilience picture 
• The resilience matrix 

4.1 Data source and basic explanation: 

The data process preparation outputs included different CSVs containing: 

• from the CSV in Analysis 4 it has been extracted which is the departure delay of the flights affected by 
each of the disturbances in each particular airport. 

• from the CSV in Analysis 5 it has been extracted which is the arrival delay (next leg, hence destination 
airport) of those flights. 

The combination of both tables, taking into account the reference state consideration explained in the following 
paragraph, enabled determining the "en route" resilience. The information included is classified per pair of airports 
and per kind of disturbance. 

On the other hand, the "turn around" resilience was extracted from: 

• the CSV in Analysis 5 contained which is the arrival delay of the flights affected by each of the disturbances 
(at the previous leg) 

• the CSV in Analysis 6 contained which is the departure delay (after turn around) of the flights affected by 
each of the disturbances (at the previous leg) 

  

For both "en-route" and "turn around" resilience the data included two different kinds of information: 

• When no disturbance (of those identified in the project) was taking place, the delay has been named; 
"reference state delay", representing the nominal condition of the system, or in other words: average delay 
when system not presumedly disturbed. 

• When an isolated disturbance occurs, the delay is named and linked to that disturbance: "disturbance X 
delay" 

• Multiple disturbances taking place at the same time have not been analysed for the reasons depicted in 
section 2 of the current document 

  

Original data sets names were: 
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  Pair of airports Single airport 

No disturbance (R1) Reference en-route delay (R2) Reference turnaround delay 

Isolated disturbance (Dx.1) En-route delay under disruption (Dx.2) Turnaround delay under disruption 

Where x ranges across all considered disturbances. 

  

4.2 Data representation 

The following graph is just an introductory example of the representations of the data. The idea is to include this 
graph explanation previously to any further data tasks applied that would make the graph and metrics 
understanding more complex. 

Each flight data is represented as a dot. The abscissa and ordinate values represent different delays values 
(minutes) at different aircraft flight stages/legs. The stage considered varies depending on if it is analysed enroute 
or turn around resilience. There is one graph per disturbance and per airport considered. Colours represent 
different destination airports in the case of en-route resilience. The colour is the same for turn around resilience. 
The abcissa and ordinate units were originally seconds. For a better undertanding in the representation have been 
transformed into  minutes (‘) or hours (h) 

 

Figure 3 Data representation example 
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4.3 Data cleansing 

Regardless of the source no data set can ever be considered errorless. Undesirable data errors can derived from 
many different sources, including: system failures, such as wrong or noisy lectures, concurrent database writing or 
even due to human factors. Recently, in the emergence of Data Science, a new term have been coined: "data 
artifacts" (J. Van den Broeck, S. A. Cunningham, R. Eeckels, and K. Herbst. Data Cleaning: Detecting, Diagnosing, 
and Editing Data Abnormalities. PLoS Med. 2(10):e267, 2005.) In general artifacts refer to errors, discrepancies, 
redundancies, ambiguities and incompleteness that hamper the efficacy of analysis or data mining. Currently, the 
detection and correction of such artifacts is a very alive research area with many different fields of application. 

The volume and data throttle in Big Data require any artifact detection technique to be both: completely 
automated and fast enough to not to interfere with the data collection process. In Resilience2050 two methods for 
data cleansing and artifacts detection are proposed: Extreme values analysis (EVA) and Outlier Detection from 
Data Subspaces (ODDS). 

The rationale behind the EVA analysis is as follows; Flights with excessive accumulated delay are most likely to be 
handled differently by operations and, therefore, their dynamics are expected to be substantially different as for 
the rest of the flights. In terms of Data Mining most of this events could be considered as "Dragon Kings" (D. 
Sornette. Dragon-Kings, Black Swans and the Prediction of Crises. 2009arXiv0907.4290S, 2009) and therefore 
should be excluded from any analysis of the system itself. The general approach for a EVA analysis consist on 
estimate the distribution of the maximum using the "Fisher-Tippet–Gnedenko Theorem" for asymptotic statistics. 
This asymptotic result however depends on the shape of the tail of the original distribution, which has to be 
estimated from the available data. Once the distribution of the maximum is known (or at least approximated)  it is 
fairly easy to estimate the probability of events over a given maximum. Almost any statistical package contains an 
implementation of EVA, more information can be found in (S. Coles. An Introduction to Statistical Modeling of 
Extreme Values. Springer, London. 2001). 

The ODDS method detects deviation patterns for common attributes. First one has to define one of two metrics, 
usually referred to as the Q-measure and the O-measure, using either of them will produce a cleaner data set, 
however the Q-measure requires less computational power at the expense of accuracy performance. Using either 
of them a CA-outlier is defined for each subset of the sample, the CA-outlier defines a score rank over the 
enumeration of all the sample's subspaces, this enumeration allows the subspaces to be arranged as a lattice. This 
lattice is pruned by a cut-off threshold given by the rate-of-change of the measure selected previously, dividing the 
sample set between outliers and non-outliers. The theoretical details of the previous algorithm can be found in 
(C.C. Aggarwal, P.S. Yu. An Effective and Efficient Algorithm for High- dimensional Outlier Detection. VLDB Journal, 
14(2):211-221, 2005.) and many common statistical packages include a more or less efficient implementation of 
the ODDS algorithm. 

Each of the previously classified data sets (R1, R2, D1.1, D1.2, ..., Dn.1,Dn.2) are cleansed individually following 
the previous method, and so producing a new set of cleansed data sets (R1*, R2*, D1.1*, D1.2*, ..., Dn.1*,Dn.2*) 
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Figure 4 Data cleansing 

Data sets names references after data cleansing: 

  Pair of airports Single airport 

No disturbance R1* R2* 

Isolated disturbance Dx.1* Dx.2* 

Where x ranges across all considered disturbances. 

4.4 Data fitting 

Once the data set has been cleansed, extreme values and outliers removed, the data is fitted using a linear 
regression. The linear regression models establishes a linear relation between a dependent variable (e.g. arrival 
delay) and a explanatory variable (e.g. departure delay). Usually, this relation is obtained by the less squares 
approach; for instance the Ordinary Leasts Squares or OLS which minimizes the distance between the linear 
function and the known data set. This method always produces the best possible linear fits in terms of euclidean 
distance. The error of the linear fitting is represented by the Sum of Squares Error or SSE, or the Root Mean 
Square Error or RMSE. (A. Björck. Numerical methods for least squares problems. Philadelphia: SIAM.ISBN 0-
89871-360-9. 1995) 
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However, the relation between the dependent and explanatory variables may not be necessarily linear. In order to 
assess the "linearity" of the data set two measures can be used, the Pearson's correlation coefficient and 
the  Spearman's rank correlation. The former is related to linear relations whist the later is refer to monotonic 
relationships. In general we will use Pearson's unless results are not clear in which case we will use Spearman's 
and give them both. 

We now apply the linear regression model explained previously to each of the cleansed data sets (R1*, R2*, 
D1.1*, D1.2*, ..., Dn.1*,Dn.2*) producing a new set of linear fits (r1, r2, d1.1, d1.2, ..., dn.1,dn.2). Note that each 
linear fits contains two parameters (e.g. r1 =(ar1,br1), dn.1=(adn.1,bdn.1), ...) 

  

Figure 5 Data fitting 

 

Data sets names references after data fitting: 

  Pair of airports Single airport 

No disturbance r1 =(ar1,br1) r2 =(ar2,br2) 

Isolated disturbance dx.1=(adx.1,bdx.1) dx.2=(adx.2,bdx.2) 

Where x ranges across all considered disturbances. 
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4.5 Reference delay rate 

The linear regression previously explained determines a linear dependence between the a dependent variable 
(arrival delay in the case of en-route delay or departure delay in the case of turnaround delay) and the explanatory 
variable (departure delay in the case of en-route delay or arrival delay in the case of the turnaround delay). Any 
linear relation is defined by two parameters; a slope and a constant term. The slope measures how delay is 
amplified (if greater than one) or adsorbed (if smaller than one), when considering the en-route delay the slope 
represents the system's capability to reduce delay by means of ATFM whilst when considering the turnaround it 
represents how the airports are capable of absorb delay.  

The constant term is a residual delay which is intrinsic to the system (the value of the dependant variable does not 
really depends on the explanatory variable). In theory both parameters are useful, however, data analysis have 
proven the constant terms to be negligible (smaller than one minute for the 90% of the data) and therefore for the 
sake of simplification will be dropped from the resilient metrics. 

 

Figure 6 Reference delay rate 

We define the performance of an airport pair or a single airport turnaround by the slope of the linear regression. In 
previous notation and when no disturbance is affecting the system the Delay Rate would be ar1 when considering 
en-route delay and ar2 when considering turnaround delay. Similarly when the system is affected by the (isolated) 
disturbance x, the Delay Rate would be adx.1 when considering en-route delay and adx.2 when considering 
turnaround delay: 
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  Pair of airports Single airport 

No disturbance ar1 (En-route Reference Delay Rate) ar2 (Turnaround Reference Delay Rate) 

Isolated disturbance adx.1 (En-route Disrupted Delay Rate) adx.2 (Turnaround Disrupted Delay Rate) 

Where x ranges across all considered disturbances. 

4.6 Disturbance Effect 

The advantage of considering the slope of the linear regression as the Delay Rate is that it does not depend on a 
particular level of delay (e.g. produced for instance by congestion), it is a "relative" value resembling the 
performance of the system (en-route or turnaround). When no disturbance occurs this Delay Rate represents the 
"normal" behaviour of the system. This "normal" behaviour is call Reference Status and must not be emroiled with 
the Desired Status. The Reference Status represents the actual performance of the system, whilst the Desired 
Status is an entelechy representing more of an aspiration than a reality. In the same way disturbances should be 
measured with respect to the Reference Status, that is; to quantify the impact of a disturbance we have to 
measure the alteration of the Reference Status while the turmoil is still active. 

In order to capture the effect that a disturbance has on the system, the proposed metric is the relative difference 
(percentage) of the Delay Rate (previously defined) between the Reference Status and the Disrupted Status. A 
Disturbance Effect close to 0 would be a very low impact on the system, while a (positive) value >>0 would mean 
a huge (positive) impact on the system, a (negative) value <<0 would represent a vast (negative) impact on the 
system. It is a signed measure of how far the system is from performing as in the Reference Status when affected 
by a disturbance. 
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Figure 7 Disturbance effect 

In previous notation the Disturbance Effect for the disturbance x would be ex1 = (ar1 - adx.1)/ar1  for en-route delay 
and ex2 = (ar2 - adx.2)/ar2 for turnaround. The Disturbance Effect for the Reference Status remains undefined, or 
just set to one for coherence. 

  Pair of airports Single airport 

No disturbance N/A (or =1) N/A (or =1) 

Isolated disturbance ex1 (En-route Disturbance Effect) ex2 (Turnaround Disturbance Effect) 

Where x ranges across all considered disturbances. 

4.7 The Resilience graph 

In this section we will provide an algorithm to generate a layered graph model, using the numerical representation 
of Disruption Effects and Reference Status explained before. A layered graph model consist on several graphs in 
which nodes are identified across. From a strictly theoretical point of view a layered graph does not add additional 
information, however, in practice there is a conceptual difference. Since nodes in each layer are identified, it is 
possible to switch across layers depending on the context. For instance, as we will see later on, one layer would 
represent the Reference State and there would be also additional layers for each disturbance considered. Then, if 
we are interested in a particular route with multiple flight legs, we can start in the Reference Graph if there is no 
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disturbance, track the flight in that layer until a disturbance occurs, then we transition to a disrupted stated. Now 
we switch to the corresponding Disrupted Graph  and continue there while the disturbance is active. 

The advantages of having a (layered) graph model is that it ultimately allows a broad variety of algorithms and 
concepts of Graph Theory to be applied. All the common elements such as Critical Paths, Minimum vertex 
cover,  Loops, Cycles, Cliques, Maximal Flows, etc. can now be interpreted in terms of system status and disruption 
effect.  

The layered graph is defined as follows; there is a base layer or Reference Graph in which airports are represented 
by nodes and two airports are connected by an edge if there are any flights between them each edge is weighed 
by the Delay Ratio (en-route for two distinct airports, and turnaround for loops on each node) of the Reference 
State. An additional layer is generated for each disturbance considered, as in the Reference Graph, airports are 
represented by nodes and two airports are connected by an edge if there are any flights affected by that 
disturbance between them. But, in contras to the Reference Graph, edges now are weighted by the Disturbance 
Effect (en-route for two different airports and turnaround for the same airport). 

  Pair of airports Single airport 

No 
disturbance 

Reference state graph edges weighted by ar1  Reference state graph node loops weighted by ar2  

Isolated 
disturbance 

Disrupted state graph edges weighted by en1  Disrupted state graph node loops weighted by en2 

  

Figure 8 Resilience graph (single disturbance) 
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Figure 9 Resilience graph: multiple disturbances 

4.8 The error and confidence layer 

The previous layered graph model provides an overall picture of the resilience of the system under disturbances. 
For many uses this picture would be enough to consider, however, in practice it is also of importance to consider 
not only the values of the parameters and metrics, but also a set of "meta-information" bounding the error and 
confidence of those. For this reason attached to each of the previous graph layers (Reference Graph and Disrupted 
state Graphs) there is an additional graph layer with the same nodes and edges but weighted by two parameters, 
a statistical significance or p-value (how sure one can be about the statistical approximation, typically 95% 
although it could go down depending on the sample distribution) and a confidence interval (a proxy of the most 
likely error in the parameter estimation within the statistical significance), While doing the data cleansing both 
methods EVA and ODDS provide a statistical significance, the linear fitting also provides a confidence interval for 
the parameter estimation. Assuming the processes are independent it is straightforward to approximate the global 
significance and confidence interval. 

The following is just an example of what the error and confidence layer looks like: 
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Figure 10 Error and confidence 

 

4.9 The global resilience picture 

All the elements described in this section determine the global resilience picture; A ground two-graphs layer, 
containing the information regarding to the Reference State of the system and, over it, several two-graphs layers 
(one for each disturbance considered) containing relative information of the system under certain isolated 
disturbance or Disturbed State with respect to the Reference State. Each layer is composed of two graphs: one 
containing the Delay Rates, in case of the Reference State, and the Disturbance Effect, for the disruption layers, 
and another layer containing the statistical significance and confidence intervals of those. 

 

Figure 11 Global resilience picture 
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4.10 The Resilience Matrix 

Alternatively to the graph representation one can consider the adjacency matrix. Adjacency matrices comprises 
exactly the same information as graphs, but they could be a better presentation when the graphs are highly 
connected specially if there is a considerable number of nodes involved. In addition matrix representation allows a 
better communication in a digital world providing a more suitable portrayal for exporting and integration with 
current systems. In the Resilience Matrix (or matrices) values are stored in several csv files, two for the Reference 
Status plus two additional files for each disturbance studied (or Disturbed Status). Each file contains as many 
columns and rows as the number of nodes (airports) considered, in each position the weight of the respective 
graph is stored. 

  EGCC EGLL EDDL EDDT ENGM ... 

EGCC -5% -3% -3% n/a 0% ... 

EGLL +9% +8% -4% +2% -1% ... 

EDDL -1% 0% -7% +5% +12% ... 

EDDT 0% +8% +10% -12% -9% ... 

ENGM +6% n/a 0% -3% +6% ... 

... ... ... ... ... ... ... 
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5 A causality perspective 

5.1.1 Rationale for a causality delay analysis 

As described in Section 4, the methodology previously proposed is centred on the analysis of single disturbances, 
and on how these disturbances propagate through the network after one or two flights of an affected aircraft. This 
leaves several questions unanswered, as for instance: how delays propagate after these first two flights? Is there 
any global pattern of delay propagation, i.e. independent of the originating disturbance? Within this propagation 
process, are there some airports more important than others? In this Section, we try to answer this questions by 
analysing the propagation of any delay through the network by means of causality measures. 

The rationale behind this analysis is that, when delays appear in one airport, these may be propagated to other 
airports by connecting flights, thus creating a cascade effect. By analysing how delays evolve in pairs of airports, 
such effect should be detectable; yet, a simple correlation analysis may provide unreliable results, as for instance 
two airports may have delays because of bad weather, and not because a real delay propagation has occurred. 
The solution to this problem has been already proposed 40 years ago in economy, as involves the use of causality 
metrics, i.e. metrics able to detect the presence of a "forcing" between two time series, discarding any co-effect. In 
what follows, such causality metric is described, and then applied to the evolution of delays in 50 european 
airports. 

  

5.1.2 Granger causality 

The Granger causality test is an extremely powerful tool for assessing information exchange between different 
elements of a system, and understanding whether the dynamics of one of them is led by the other(s). Firstly 
introduced by the Nobel Prize winner Clive Granger (Granger, 1969), its main applications have been inside the 
field of economics (Hoover, 2001); yet, recently has been successfully applied to other fields of research, as for 
instance the analysis of biomedical data (Brovelli et al., 2004; Kamiski et al., 2000; Roebroeck et al., 2005). 

Classical statistical instruments, like, for instance, correlation analysis, are only able to assess the presence of some 
common (equivalent) dynamics between two or more systems. However, correlation does not imply causality. 
Granger causality, on the other hand, is held to be one of the few tests able to detect the presence of causal 
relationships between different time series. The two axioms, on which this test are based, are as follows: firstly, 
causes must precede their effects in time, and secondly, information relating to a cause’s past must improve the 
prediction of the effect above and beyond information contained in the collective past of all other measured 
variables (including the effect). 

Following the previous ideas, a time series p is considered to Grange-cause another time series q if the inclusion of 
past values of the series q can improve the process of forecasting the values of the time series p. In this case, the 
future evolution of p also depends on the past values of q. Also, it should be noted that two time series presenting 
a high correlation, or two time series that are ‘forced’ by a third system, do not pass the Granger causality test: as 
they have similar values, one of them cannot convey useful information for the forecast of the other. Yet, claims of 
causality from (multiple) bivariate time series should always be taken with caution, as true causality can only be 
assessed if the set of two time series contains all possible relevant information and sources of activities for the 
problem (Granger, 1980), a condition that real-world experiments can only rarely comply with (Zanin and Papo, 
2013). 
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5.1.3 Network reconstruction 

The network reconstruction process starts with time series representing average landing delays across European 
airports. This information has been extracted from the Flight Trajectory (ALL-FT+) data set as provided by the 
EUROCONTROL PRISME group, as described in Resilience2050 D2.1 and D2.2.   

For the top-50 European airports (in terms of movements, as recorded in 2011), a time series has been extracted, 
representing the average hourly delay of arriving flights. Due to some missing days, each time series comprises 
7440 values. These delay time series presented several trends, as strong delays are expected mainly at peak 
hours, during week days, and during summer, i.e. those periods in which the traffic is higher. A detrend process 
has then be performed using delay values corresponding to one week (168 hours) before and after each value. 

Starting from this information, a network is reconstructed, where each one of the 50 nodes represents an airport of 
the set. For each pair of nodes (airports), the Granger Causality is calculated. This involves, at each available time 
step, the forecast of the next value of the time series by means of a multi-linear regression, using the information 
of the last 24 hours; two errors are then compared: the one corresponding to the forecast obtained using only 
information about the first node, and the one corresponding to the forecast including information extracted from 
the time series corresponding to the second node. The result is then expressed as a F-Statistics significance level, 
assessing whether the two forecast errors are significantly different, and thus whether some causality has been 
detected in the data. A link between two nodes, A and B, is then created when two conditions are simultaneously 
met: there is a significant causality between A and B (significance level greater than 0.99), and no causality is 
detected between B and A (significance level lower than 0.99). This reduces the effects of confounding factors, 
e.g. the presence of a third airport forcing both A and B, that would result in bidirectional causalities. The result is 
an unweighted directed network, where bidirectional links are forbidden. 

 The following image depicts the  resulting network, with arrows indicating the presence of causality between the 
delays of pairs of airports. The size of the nodes represents their out-degree, i.e. the number of airports they are 
"driving", while the color represents their in-degree, i.e. the number of airports forcing their dynamics. 
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Figure 12 Causality analysis 

As it can be noticed, the most important airport of the network, in terms of spreading delays through the system, 
is LEMG - Malaga, Spain. Due to its high connectivity with different part of Europe, delays here generated can 
easily propagate to Germany (EDDT), Nederland (EHAM), Greece (LGAV), Russia (UUEE) or Italy (LIRF). On the 
other hand, the two airports that are mostly being driven by other airports are EPWA (Frederic Chopin Airport, 
Warsaw) and LTFJ (Sabiha Gökçen, Istanbul). 
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6 Annex 1 - Acronyms 

Table 6-1 List of acronyms 

Term Definition 

AAT Aeronautics and Air Transport 

ALL_FT+ All Flights Trajectories 

ANSP Air Navigation Service Provider 

ATFCM Air Traffic Flow Capacity Management 

ATFM Air Traffic Flow Management 

ATM Air Traffic Management 

CDM Collaborative Decision Making (Airports) 

CFMU Central Flow Management Unit 

CORDIS Community Research and Development Information Service 

CRCO Central Route Charges Office 

CSV Comma Separated Value 

D.X.Y Deliverable X.Y 

DDR Demand Data Repository 

DHMI Devlet Hava Meydanlari Isletmesi (The General Directorate of State Airports Authority in Turkey) 

DLR Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Centre) 

DoW Description of Work 
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EC European Commission 

FP Framework Programme 

ICAO International Civil Aviation Organization  

INX The Innaxis Foundation and Research Institute 

ITU Istanbul Teknik Universitesi  (Istanbul Technical University) 

KCL King's College London 

METAR Meteorological Aerodrome Report 

NLR Nationaal Lucht en Ruimtevaartlaboratorium (The National Aerospace Laboratory – The Netherlands) 

NOP Network Operation Plan 

PRISME Pan-European Repository of Information Supporting the Management of EATM 

QNH Atmospheric Pressure (Q) at Nautical Height 

R&D Research and Development 

RAF2050 Resilience Analysis Framework 

SES Single European Sky 

SESAR Single European Sky ATM Research Programme 

TAF Terminal Area Forecast 

UPM Universidad Politécnica de Madrid (Madrid Technical University) 

WP Work Package 
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