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In this presentation

= Whois EUROCONTROL Maastricht UAC

= ATC to ATM, and the problem of predictability
= Rationale for a deep neural network

= Details of the implementation

= |Integration in the operational system

= Real-life results
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EUROCONTROL Maastricht Upper Area Control Centre

= Cross-border ATC

A = Upper area
\/ = > 1.8 million flights
/ (5700 on peak day)
F( = Highest controller
productivity

= Driven by innovation
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EUROCONTROL Maastricht Upper Area Control Centre

=  https://www.youtube.com/watch?v=gBwwik4F2Q0g



https://www.youtube.com/watch?v=gBwwik4F2Og
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Air Traffic Control to Air Traffic Management
(ATC to ATM)

= Amount of traffic an air traffic controller can handle safely has a limit
= Traditional approach of splitting sectors in smaller pieces has reached
limits

=>» Delays have been increasing last couple of years

= Vision: avoid peaks in individual sectors by proactive traffic measures
(= Air Traffic Flow and Capacity Management)

= Sector workload prediction 3h-30min horizon from ‘now time’
= Detection of upcoming traffic clusters  30-10min horizon from ‘now time’

= But predictability degrades quickly when look-ahead is 10min or longer ...
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Challenges to predict traffic for MUAC

1. Flights not conforming to the route in the filed flight plan because air
traffic controllers give permission to fly shorter routes (local & upstream)

2. Uncertainty of departure times at airports in the vicinity
Rate of climb/descent, ground speed
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Is it possible to predict

controller instructions ?

o < And, by extension, the
£ s ] flown trajectory ?

Flown trajectory = .

TP L
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Machine Learning

= Key enabler is availability of historical data

= Supervised learning:

offline

Training Data

Machine Learning
Algorithm
Predictive Model

online




Machine Learning Algorithms
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= Several machine learning algorithms have been evaluated

Decision Trees

Random Forests

Kernel Support Vector Machines
K-Nearest Neighbours

Neural Networks

= Random forest with adequate pruning offered the best results out of the
box.

= With lots of tuning, a deep neural network could surpass the results by a
small margin.
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Rationale for a deep neural network

= Random forest required disproportionate more computing resources if
amount of training data and number of predictors increased

= The serialised model was much smaller with a neural network
important for scalability: training is done offline; the serialised model is deployed
as adaptation data to the production environment

= Off-the-shelf libraries (TensorFlow)
= high degree of customisability, e.g. custom cost functions

= APl integration with existing application code
solution had to be integrated in EUROCAE ED-153 Software Assurance Level 4
(SWAL4) environment written in Java

= offloading computations to GPU cards speeds up training
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Target data to be predicted

= Intersection observed trajectory and the MUAC Area of Responsibility
(AoR)

= Simplified to 4 points by iteratively applying the Douglas-Peucker
algorithm

For 99.6% of the flights, the lateral deviation does not exceed 5NM at any point
along the trajectory. For 89%, the lateral deviation does not exceed 1INM

= Makes sense because flown route is typically result from ‘direct-to’ and
‘heading’ instructions, and controllers like to minimize the amount of
instructions



Target data to be predicted

Spacing if colinear
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Transformation of target data to be predicted

New X-axis

ELS -\
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Transformation of target data to be predicted

= The x/y coordinates of the 4 points are rotated and scaled.
= NCOP-BPXCOP axis from filed plan - data known prior to prediction !
= Coordinates on the new X-axis are scaled by 0.5

» normalization for the target data

» scaling along the new X-axis allows for a more optimal cost function
» generic sanity checking on the output data



Predictors : flight plan data
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be

XCOP

+ day of week

+ expected 30min entry interval

BPXCOP

ADES,
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Predictors : military areas

= 15NMK15NM grid cells,
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Predictors : military areas
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Neural network

NCOP \ + noise
XCOP

BPXCOP

ADEP

Bearing to ADES
Day of week

Entry time interval
NFL

RFL

XFL

8 coordinates

Input Hidden
units units

' / 3 hidden layers of 170 units with ELU activation
 / dropout for regularisation
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Cost function

= Most correct cost function would be lateral distance between the position
on the predicted route and the position on the real route at equivalent
progression times.
=>» difficult from a practical perspective

= Pragmatic:
= Distances at entry and exit
= Area of polygon /L
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Training data

= Flow from UK to south / south-east
= ~10% of all traffic, suffers heavily from route deviations
= 15 January 2015 - 20 March 2018 (more than 362.000 flights)

= Incremental training with 2.600.000 batches of 1000 random samples

= Neural network has also been trained on all flows (> 3.5 million flights),
but is not yet in operational use due to integration issue legacy system



Example prediction

€

EUROCONTROL
e . =k ]
3 o e S N [
A e \ 7 X%  °
o 2 ( o s (
X b _ ) N
4 o K ' ‘ - L ‘
g < ) ;.‘, : 1
S5 K : N
o ’ 77
; =

Figure 2: prediction (red) for flight of figure 1 (blue)

Figure 3: prediction for flight with active military areas



Integration in operational system
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In operational use since January 2018
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Real life results
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Real life video
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Real life video
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Real life use case

= CFE53TKEGLC to LIML

= 27" delay because included in regulation OLNO sector

= Neural network predicted that flight would not fly through OLNO but LUX
= Flight was excluded by FMP operator from regulation : no delay

= under study: exclude flights via NM B2B interface, enabling automation of
this workflow






