

Predicting **flight routes** with a **deep neural network** in the Air Traffic Flow and Capacity Management system

Herbert Naessens, 11 October 2018

In this presentation

- Who is EUROCONTROL Maastricht UAC
- ATC to ATM, and the problem of predictability
- Rationale for a deep neural network
- Details of the implementation
- Integration in the operational system
- Real-life results

EUROCONTROL Maastricht Upper Area Control Centre

EUROCONTROL Maastricht Upper Area Control Centre

https://www.youtube.com/watch?v=gBwwik4F2Og

Air Traffic Control to Air Traffic Management (ATC to ATM)

- Amount of traffic an air traffic controller can handle safely has a limit
- Traditional approach of splitting sectors in smaller pieces has reached limits
- → Delays have been increasing last couple of years
- Vision: avoid peaks in individual sectors by <u>proactive</u> traffic measures
 (= Air Traffic Flow and Capacity Management)
 - Sector workload prediction
 3h-30min horizon from 'now time'
 - Detection of upcoming traffic clusters 30-10min horizon from 'now time'
- But predictability degrades quickly when look-ahead is 10min or longer ...

Challenges to predict traffic for MUAC

- Flights not conforming to the route in the filed flight plan because air traffic controllers give permission to fly shorter routes (local & upstream)
- 2. Uncertainty of departure times at airports in the vicinity
- 3. Rate of climb/descent, ground speed

The problem

Machine Learning

- Key enabler is availability of historical data
- Supervised learning:

Machine Learning Algorithms

- Several machine learning algorithms have been evaluated
 - Decision Trees
 - Random Forests
 - Kernel Support Vector Machines
 - K-Nearest Neighbours
 - Neural Networks
- Random forest with adequate pruning offered the best results out of the box.
- With lots of tuning, a deep neural network could surpass the results by a small margin.

Rationale for a deep neural network

- Random forest required disproportionate more computing resources if amount of training data and number of predictors increased
- The serialised model was much smaller with a neural network important for scalability: training is done offline; the serialised model is deployed as adaptation data to the production environment
- Off-the-shelf libraries (TensorFlow)
 - high degree of customisability, e.g. custom cost functions
 - API integration with existing application code solution had to be integrated in EUROCAE ED-153 Software Assurance Level 4 (SWAL4) environment written in Java
 - offloading computations to GPU cards speeds up training

Target data to be predicted

- Intersection observed trajectory and the MUAC Area of Responsibility (AoR)
- Simplified to 4 points by iteratively applying the Douglas-Peucker algorithm
 - For 99.6% of the flights, the lateral deviation does not exceed 5NM at any point along the trajectory. For 89%, the lateral deviation does not exceed 1NM
- Makes sense because flown route is typically result from 'direct-to' and 'heading' instructions, and controllers like to minimize the amount of instructions

Target data to be predicted

Transformation of target data to be predicted

- The x/y coordinates of the 4 points are rotated and scaled.
 - NCOP-BPXCOP axis from filed plan → data known prior to prediction!
 - Coordinates on the new X-axis are scaled by 0.5
- normalization for the target data
- scaling along the new X-axis allows for a more optimal cost function
- generic sanity checking on the output data

EUROCONTROL

Predictors: flight plan data

Predictors: military areas

Predictors: military areas

Neural network

NCOP
XCOP
BPXCOP
ADEP
Bearing to ADES
Day of week
Entry time interval
NFL
RFL

XFL

+ noise

3 hidden layers of 170 units with ELU activation dropout for regularisation

Cost function

- Most correct cost function would be lateral distance between the position on the predicted route and the position on the real route at equivalent progression times.
 - → difficult from a practical perspective
- Pragmatic:
 - Distances at entry and exit
 - Area of polygon / L

Training data

- Flow from UK to south / south-east
- ~10% of all traffic, suffers heavily from route deviations
- 15 January 2015 20 March 2018 (more than 362.000 flights)
- Incremental training with 2.600.000 batches of 1000 random samples
- Neural network has also been trained on all flows (> 3.5 million flights),
 but is not yet in operational use due to integration issue legacy system

Example prediction

Figure 2: prediction (red) for flight of figure 1 (blue)

Figure 3: prediction for flight with active military areas

Integration in operational system

In operational use since January 2018

Real life results

Real life video

Real life video

Real life use case

- CFE53TK EGLC to LIML
- 27' delay because included in regulation OLNO sector
- Neural network predicted that flight would <u>not</u> fly through OLNO but LUX
- Flight was excluded by FMP operator from regulation : no delay

under study: exclude flights via NM B2B interface, enabling automation of

STATE OF THE PERSON NAMED IN A SECTION AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF STATE OF THE PARTY. Sec. 1886