
Dynamic Pricing Competition
Scenario descriptions

Scenario 3: Large market with horizontal product differen-
tiation

In this scenario, all players compete against each other in a single market, where
each player sells a single product with unbounded inventory. We run a large
number of S simulations. In each simulation all players compete against each
other during T = 1000 discrete time periods indexed by t = 1, . . . , T . Let
n denote the total number of players. In each time period t ∈ {1, . . . , T} all
players i = 1, . . . , n determine a price pi,t ∈ {0.00, 0.01, . . .}, after which sales
si,t is realized, for each player i = 1, . . . , n. Sales is realized according to an
undisclosed sales-generating mechanism that may be different in each simula-
tion (but, conditionally on selling prices, statistically identical in different time
periods within the same simulation). The prices are observable for all players,
but each player can only observe his/her own sales. After sales has realized,
each player i = 1, . . . , n earns revenue pi,tsi,t and one proceeds to the next
time period. The objective is to maximize expected revenue earned over the
whole time horizon t = 1, . . . , T , averaged over all simulations. The following
domain knowledge is available: (i) sales is stationary (ii) prices larger than 100
will generate a negligible amount of sales (regardless the other player’s prices),
and (iii) demand is influenced by some form of horizontal product differentiation.

1

Sample code Scenario 3:

import numpy as np

def p(prices_historical=None, demand_historical=None, information_dump=None):

"""

this pricing algorithm would return the minimum price used

by any competitor in the last iteration, it returns a random

price if it is the first iteration

input:

prices_historical: numpy 2-dim array: (number competitors) x (past iterations)

it contains the past prices of each competitor

(you are at index 0) over the past iterations

demand_historical: numpy 1-dim array: (past iterations)

it contains the history of your own past observed demand

over the last iterations

information_dump: some information object you like to pass to yourself

at the next iteration

"""

if demand_historical is None :

return (round(np.random.uniform(30,80),1) , None)

next_price = np.min(prices_historical[1:, -1])

return (round(next_price,1) , information_dump)

2

