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Abstract

This paper explores the use of multi-bit quantisation of
image features for similarity-based image retrieval. Our
work builds on multi-resolution image similarity search al-
gorithms which utilise one-bit representation of the largest
magnitude wavelet coefficients. Given a query, images are
ranked based on the number of quantised coefficients they
have in common with the query. We explore the benefits of
a finer-level quantisation (specifically with two bits) and
one control parameter that can be chosen optimally based
on the probability density of the wavelet coefficients. We
show that this extension leads to significant performance
improvements.

I. Introduction

The problem of search pervades almost every branch of
artificial intelligence. The field of information retrievalhas
it at its core. Finding relevant information in large collec-
tions of data calls for object representations that are rich
enough to capture salient properties and yet simple enough
to support fast indexing and retrieval strategies. Common
representation of multimedia objects utilises vectors in a
high-dimensional metric space. Finding items similar to a
query amounts to a nearest neighbour search in that space.
Even when done approximately, nearest neighbour search
scales poorly with the number of dimensions and is gen-
erally too costly for realtime image retrieval. The problem
can be mitigated by reducing the dimensionality of the
original space, for example through principal component
analysis, probabilistic latent semantic indexing [1] or non-
negative matrix decomposition [2].

A popular alternative is vector quantisation, which maps
the vector space onto a finite set of labels or codevectors
each representing one of the partition regions. By thus dis-
cretising the continuum, data can be stored in an inverted
index, widely seen as the only viable indexing technique
for large-scale search [3]: instead of mapping each object

to the codewords it generates, each codeword is mapped to
the objects generating it. Retrieval thus becomes a look-up
and merge operation. First used for text retrieval, inverted
indexes have become thede factostandard for large scale
image matching [4] and similarity search [5].

Finding the closest code vector for a new data point
involves a nearest neighbour search amongst all codevec-
tors, which can be costly for large codebooks. A number
of variants have therefore been proposed. One elegant
technique suggested in [6] is to assign each point to the
m > 1 closest codevectors or pivots, rather than just
the closest, thus rendering the mapping function more
expressive and allowing for smaller codebook sizes. Alter-
natively, the cost can be reduced by mapping each point not
to the closestk-dimensional codevector, but the ordered
set of the codevector’sk quantised components. For an
axis-parallel partitioning, this amounts to simple scalar
quantisation along each of thek dimensions. Forb bins
along each dimension, there are thusbk codewords, each
being identified by a unique combination of the component
index and its quantisation level.

Amongst the earliest works that apply the idea of scalar
quantisation to image retrieval is that of Jacobset al. [7].
In their scheme, vector components are first sorted by
magnitude and the largest components binarised. Retrieval
involves extracting and binarising the largest magnitude
coefficients of a query image and scoring images based on
the number of matching codewords.

This paper extends the work of [7] by investigating the
implications of multi-bit quantisation, in particular 2-bit
quantisation with one parameter controlling the relative bin
size. The intuition is that with finer quantisation, matches
in the quantised domain should be closer in the original
vector space. We formalise this intuition theoretically and
demonstrate that whilst multi-bit quantisation does indeed
improve with respect to two different performance mea-
sures for a broad range of parameter values, the relative
benefit vanishes when only a small number of coefficients
are retained. The results suggest that multi-bit quantisation



can improve retrieval accuracy over one-bit qunantisa-
tion whilst still benefitting from the near-constant time
complexity afforded by inverted index structures during
retrieval.

The paper is structured as follows. Section II briefly
presents background material. Section III motivates and
describes the multi-bit extension, and suggests ways to
estimate the optimal control parameter. Section IV presents
simulation results comparing 1-bit with 2-bit quantisers
in terms of difference in coefficient values and retrieval
performance. Finally, we conclude in Section V.

II. Wavelets and Truncated Coefficient Quan-
tisation

We briefly review the wavelet decomposition literature
and its application to image similarity search in this
section. We then detail the main components of the seminal
work of Jacobset al. [7] which our paper expands upon.

A. Wavelet Decomposition

Wavelet theory [8] has gained tremendous attention
in the content-based image retrieval community. Do and
Vetterli, for a given scale, model the wavelet coefficients
with a generalised Gaussian density function as the feature
extraction step and compute the Kullback-Leibler distance
as a similarity measure for texture retrieval [9], [10]. Wang
et al. characterises the color variations over the spatial
extent of the image in a manner that provides semanti-
cally meaningful image comparisons [11]. The indexing
algorithm applies a Daubechies’ wavelet transform for
each of the colour components. The wavelet coefficients
in the lowest few frequency bands, and their variances,
are stored as feature vectors. To speed up retrieval, a
two-step procedure is used 1) first, a crude selection
based on the variances, and then 2) a refinement of the
search by performing a feature vector match between the
selected images and the query [11]. Liapis and Tziritas
extract thetexture featuresusing Discrete Wavelet Frames
analysis, an over-complete decomposition in scale and
orientation. Two-dimensional (2-D) or one-dimensional (1-
D) histograms of the CIE Lab chromaticity coordinates
are used as colour features. The 1-D histograms of the
a, b coordinates were modeled by a generalised Gaussian
distribution. The similarity measure defined on the feature
distribution is based on the Bhattacharya distance [12].
Ma and Manjunath compare different wavelet transform-
based features for content based texture search and re-
trieval [13]. Huang and Dai generate subband gradient
vector and energy distributions from the subimages of the
wavelet decomposition of the image in a two step similarity

measure system [14]. Suematsuet al. propose a region-
based image retrieval based on segmented texture features
computed from wavelet coefficients [15].

B. Coefficient Truncation

Wavelets achieve very good image approximations with
only a few coefficients, a property that makes them an
important tool in lossy image compression [16]. Jacobset
al. were amongst the first to exploit this property for image
retrieval. Following their work, we choose Haar wavelets
as they are very fast and simple to compute. For a given
query imageIq, we obtain a sequence ofN coefficients
{ci : i = 1, 2, . . . , N}. Rather than retaining all of them, it
is desirable to “truncate” the sequence and keep only the
M coefficients with largest magnitude:

t = {cj : j = 1, 2, . . . , N ; Ψ{cj} ≤ M}

whereΨ denotes the order of the coefficient when their
magnitudes are sorted in descending order. We thus ob-
tain the truncated coefficient sequencet = {tj : j =
1, 2, . . . , M}. Truncation accelerates search times and re-
duces storage requirements. Moreover, we will show that
it may also improve the discriminatory power of the
signature.

C. Binary Quantisation

Quantisation brings similar benefits as truncation. Al-
though the quantised coefficients retain little data about
the precise magnitudes of major features in the images,
the mere presence or absence of such features appears to
provide enough information for image querying.

It is argued in [7] that quantising each significant
coefficient to only two levels,i.e.,

qj = sign{tj}

works remarkably well. To our knowledge, the possibility
of a multi-level representation of the truncated coefficient
set{tk : k = 1, 2, . . . , M} has not yet been investigated.

III. Multi–Level Quantisation

In this section, we first present an intuitive Lemma
motivating the natural extension to multi-resolution rep-
resentation for image similarity search. We subsequently
extend the single-bit quantisation feature representation to
multiple bits and focus on the simplest extension,i.e., two
bits. Also discussed is the problem of setting thecontrol
parameterof the proposed 2-bit quantiser.



A. Basic Idea

A finer quantisation has the effect of increasing the
chance that two images matching each other on a given
number of quantised components are also close in the non-
quantised domain. Before we present a Lemma making this
observation more formal, let us introduce some notation.
Let c(I) ∈ R

N , t(I) ∈ R
M and q(I) ∈ R

M (where
M ≤ N ) denote, respectively, the representation vector
(i.e., Haar wavelet coefficients, Fourier coefficients, edge
strength map, RGB values, etc.), truncated representation
vector and quantised representation vector for the image
I. Note that, without loss of generality, we taketk(I) =
ck(I)1{λ(ck(I)) ≤ M}, and qk(I) = Q(tk(I)) where
Q(·) denotes the quantisation operator.

Lemma 1 Let Sq(I, J) denote the set of indices of exact
quantised value matches for imagesI andJ . For a random
query imageI and a random imageJ in the database, the
following statement holds:

Pr{||c(I) − c(J)||2 ≥ ε||Sq(I, J)| = m}

≤ ε−2∆2[m(1 − 4n2) + 4Kn2]

for any ε > 0, where || · ||2, | · | denotes thè 2 norm,
and cardinality, respectively. Moreover,|ck| ≤ U = n∆,
n ∈ N

+, for all k = 1, 2, . . . , N .

Proof: See Appendix A.
Note that the above Lemma assumes that the repre-

sentation elements are bounded and uniformly quantised.
Thus, for a given number of perfect matches in the
quantised domain, the probability of real non-truncated
representation vector elements of two images being “close”
to each increases with decreasing quantisation bin size and
increasing number of matches. On the assumption that
the non-quantised representation space provides a good
approximation of image semantics, this lemma suggest that
a finer quantisation will improve the “quality” of similarity
resultsquadratically with the bin size andlinearly with
respect to the number of matches.

The simplest extension of the binary scheme is a 2-bit
quantiser with four bins for each coefficient:

V−2 = (−∞,−θ], V−1 = (−θ, 0], V1 = (0, θ], V2 = (θ,∞)

with
tj ∈ Vk ⇒ qj = k.

Through its parameterθ, the 2-bit quantiser allows to
differentiate between large and larger coefficients, and
offers the possibility of adjusting the relative bin sizes for
different image collections. Figure 1 depicts the traditional
single bit quantiser along with the proposed two bit quan-
tiser and various choices of the control parameterθ.
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Fig. 1. 2-bit quantisers for control parameters
(red) θ = θ0 = 0, (blue) θ = θ1 = 0.75 and
(purple) θ = θ2 = 0.40. Of note is that θ = 0
reduces the 2-bit quantiser to a 1-bit one.

B. Indexing and Retrieval

The advantage of quantisation in the context of image
retrieval and image matching is the ease with which images
can be indexed and retrieved. Following truncation and
2-bit quantisation, images can now be represented as a
finite set of labels, each being identified by the coefficient
index and the quantisation level. There are thus a total
of 4N labels whereN is the number of non-truncated
coefficients. Because only a fractionM of coefficients are
retained, and each coefficient is quantised uniquely, each
image gives rise to exactlyM labels. We store for each
label (combination of coefficient index and quantisation
level) the list of images in which that particular coefficient
has been quantised to that particular level. LetC be the
set of images in the database andL the lexicon (set of
all labels). The inverted index data structure is a mapping
Φ : L 7→ P(C) where P denotes the power set, with
Φ(λ) = S if λ ∈ Q(Ii) for all Ii ∈ S (hereQ(·) denotes
any signature generator). Given a query signature, the
inverted index allows fast subset selection as it circumvents
the need to visit any non-matching database items. In
particular, given a query imageIq with codewordsQ(Iq),
we retrieve the unionM over label-wise matches,

M(Iq) =
⋃

λ∈Q(Iq)

Φ(λ).

The subset can then be ranked using a variety of scoring
functions. We use the number of label matches as in [7].

C. Insights into Parameter Selection

The control parameterθ determines the relative widths
of the four bins, forθ = 0 and largeθ, the 2-bit quantiser
reduces to a 1-bit quantiser. In the context of compres-
sion and communication, quantiser performance is often
measured in terms of the averagerth-power distortion,



δr(Qk|f(x)) = E[||X−Qk(X)||r], r ∈ [1,∞], wheref(x)
denotes the probability density of the random variableX .
For the purpose of retrieval, it seems preferable to choose
any of the standard information retrieval measures, such as
average precision or precision amongst the topk matches.

If class labels are absent, a surrogate measure may be
obtained by measuring the average distance between the
real-valued coefficients of the query image and those of
the top J results (retrieved using the result of the 2-bit
quantiser),

E(θ) =
1

J × N

N
∑

i=1

J
∑

j=1

||c(Ii) − c(Ij)||22. (1)

We may approximate this empirical measure by

E{E(θ)} =

∫ ∞

−∞

1

J

J
∑

j=1

||x − c(Ij)||
2
2f(x)dx

where the expectation is taken over the query vector
with probability density functionf(x). Assuming that the
database is sufficiently large for the topJ matches to
have the same truncated vector quantisation as the query
image, i.e.q(c(Ij)) = q(c(Iq)) for all j = 1, . . . , J , and
assuming further that all coefficients are i.i.d. accordingto
some pdf, the following Lemma gives the expectation of
interest.

Lemma 2 Let V−2 = (−∞,−θ], V−1 = (−θ, 0], V1 =
(0, θ], V2 = (θ,∞). Then, the normalised expected error
is given by

1

K
E{E(θ)|q(c(Ii)) = q(c(Ij

i )), ∀i, j}

=
∑

m∈M

2(αm,0(θ)αm,2(θ) − α2
m,1(θ)) (2)

where

αm,r(θ) =

∫

ck(Ii)∈Vm

cr
k(Ii)f(ck(Ii))dck(Ii)

with r ∈ {0, 1, 2}.

Proof: See Appendix B.
In essence, the above result attempts to provide an

answer to the following question: Suppose you have two
random vectors generated from i.i.d. processes. Given
that they match perfectly after they are quantised to two
bits with a given control parameter, what is the squared
difference (on average) between the unquantised versions
of these two random vectors?

For the given application at hand,i.e., image similarity
search, we would like to minimize the expected error. The
optimal point, in the general case, can be found through
numerical search algorithms guaranteeing the convergence

TABLE I. Terms of interest along with their
first and second derivatives

Parameter First Derivative Second Derivative
α−2,2(θ) −θ2f(−θ) −(2θf(−θ) − θ2f ′(−θ))
α−1,2(θ) θ2f(−θ) 2θf(−θ) − θ2f ′(−θ)
α1,2(θ) θ2f(θ) 2θf(θ) + f ′(θ)θ2

α2,2(θ) −θ2f(θ) −(2θf(θ) + f ′(θ)θ2)
α−2,1(θ) θf(−θ) f(−θ) − f ′(−θ)θ
α−1,1(θ) −θf(−θ) −(f(−θ) − f ′(−θ)θ)
α1,1(θ) θf(θ) f(θ) + f ′(θ)θ
α2,1(θ) −θf(θ) −(f(θ) + f ′(θ)θ)
α−2,0(θ) −f(−θ) f ′(−θ)
α−1,0(θ) f(−θ) −f ′(−θ)
α1,0(θ) f(θ) f ′(θ)
α2,0(θ) −f(θ) −f ′(θ)

to the global optimum value (if there is only a single
minima) or to a local minimum in case there are several.
Given the expected error expression, we are now in a
position of calculating (at least numerically) the optimal
control parameter as

θ? = arg min
θ

E{E(θ)}

under the rather restricted conditions we have considered.
The optimal control parameter satisfies the following con-
dition ∂E{E(θ?)}/∂θ = 0 implying that

∑

m∈M

(α′
m,0(θ

?)αm,2(θ
?) + αm,0(θ

?)α′
m,2(θ

?)

− 2αm,1(θ
?)α′

m,1(θ
?)) = 0

where we defineα′
m,r(θ) = ∂αm,r(θ)/∂θ. Now, given an

initial point θ0, we can utilise the Newton-Raphson method
to find a local (if the curve is (quasi)-convex, the global)
minimum:

θt+1 = θt −

(

∑

m∈M

gm(θt)

)−1
∑

m∈M

hm(θt)

where

hm(θt) = α′
m,0(θt)αm,2(θt) + αm,0(θt)α

′
m,2(θt)

− 2αm,1(θt)α
′
m,1(θt)

and

gm(θt) = α′′
m,0(θt)αm,2(θt) + α′

m,0(θt)α
′
m,2(θt)

+ α′
m,0(θt)α

′
m,2(θt) + αm,0(θt)α

′′
m,2(θt)

− 2α′
m,1(θt)α

′
m,1(θt) − 2αm,1(θt)α

′′
m,1(θt)

with gm(x) = ∂hm(x)/∂x andα′′
m,r(θ) = ∂α′

m,r(θ)/∂θ.
The first and second derivatives of each term are given in
Table I and derived in Appendix C. Newton iterations stop
when |θt+1 − θt| ≤ ε for some smallε > 0.

Moreover, although derived under strong assumptions,
we show in later sections how good an approximation this
provides of the empirical error.



Fig. 2. Example images from two categories
(“bags” and “shoes”) of the apparel collec-
tion.

IV. Experiments

This section 1) details the datasets utilised during sim-
ulations, specifically the MNIST and commercial apparel
collection, 2) investigates the performance of the truncation
level applied at the Haar transformation stage, and finally,
3) presents simulations to validate the insights developed
in the previous sections by showing that the derived
theoretical expression and the experimental optimal control
parameter coincide almost fully, even under conditions
violated by Lemma 2.

A. Datasets

The MNIST digits database, found at
http://yann.lecun.com/exdb/mnist, is a
set of 70,00028× 28 quasi-binary images of handwritten
digits. It is commonly used for evaluating multi-class
classifiers with state-of-the-art performance around 99.5%
[17]. We scale the images to32 × 32 before computing
the Haar wavelet decomposition, leading to a vector
of size 1024. The apparel collection contains 9,800
colour images from 25 different online retailers and
10 different categories: ‘accessories’, ‘bags’, ‘dresses’,
‘jackets’, ‘jewellery’, ‘lingerie’, ‘shoes’, ‘skirts’, ‘tops’
and ‘trousers’. Examples for two classes are shown in
Fig. 2. Images were cropped to the largest bounding
square and resized to32 × 32. Only the luminance data
were used for wavelet decomposition.

B. Effect of Truncation

The first set of simulations seek to quantify the ad-
vantage of 2-bit over 1-bit quantisation, using two dif-
ferent measures: precision at 20 or PR20 (the number of
relevant images retrieved amongst the top 20) andE(θ)
(the average difference between the query’s non-quantised
vector representation and the query’s 20 closest matches).
Note that the first measure directly quantifies the extent
to which the system returns images of the same class as
the query, while the second measure is independent of the
images’ class memberships. As well as varyingθ between
zero and the maximum coefficient value, we change the
fraction of coefficients that are retained (truncation level)
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Fig. 3. MNIST: Effect of varying θ on PR20
(top) and E defined in Equation (1) (middle)
for four different truncation levels. Bottom
plot shows the coefficient histograms for
each of the four truncation levels.

from 10% to 100%. The results are shown in Figures 3 and
4. Note that for the coefficient histograms, we display the
distribution of the coefficients’absolutevalues; roughly
50% of the original values are negative. We make the
following observations:

Observation 1.Performance for the top three truncation
levels varies in very similar ways for both measures. Re-
trieval performance (PR20) peaks for smaller values ofθ,
and subsequently drops below the 1-bit quantiser baseline
(θ = 0) before recovering again for larger values. The
percentage gain over1-bit quantisation is 6% (MNIST) and
11% (Apparel) when all coefficients are retained (green
curve) and somewhat smaller for the next two truncation
levels. The average difference in coefficient values between
query and its top matches,E(θ), exhibits a steep drop
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Fig. 4. Apparel: Effect of varying θ on PR20
(top) and E defined in Equation (1) (middle)
for four different truncation levels. Bottom
plot shows the coefficient histograms for
each of the four truncation levels.

for θ ∈ [3, 7] (MNIST) and θ ∈ [10, 15] (Apparel)
before climbing up to the1-bit baseline. The histograms
reveal that for these three truncation levels most of the
coefficients are near zero with a shallow, albeit long tail.
The long tail becomes relatively more pronounced as we
retain progressively fewer coefficients, and the minima of
E appear to mirror this right-shift of the probability mass.

Observation 2. Performance for extreme truncation
levels (10%) varies withθ in quite a different manner.
Although retrieval performance attains a small peak for
non-zero values ofθ for both datasets, it is much less
marked than for the other three levels. Of particular interest
is the qualitatively different behaviour for theE measure
for the MNIST dataset with a minimum atθ = 0 and a
sharp rise forθ = 20. At this level of truncation,2-bit

quantisation does not seem to add value.
Observation 3. Retaining only very few large magni-

tude coefficients seems beneficial for some collections and
less for others: 10% truncation consistently outperforms all
other truncation levels for all values ofθ for the apparel
collection, while it fares worst for the MNIST dataset.

Observation 4. Although image representation is di-
versified through multi-bit representation of wavelet co-
efficients, the standard inverse index structure does not
incorporate the discrepancies between the features and
only counts the exact matches to rank images (it is of
importance to note that our algorithm outperformed the
single-bit representation scheme despite this drawback).
We believe that enriched inverted index structures based on
soft assignment which are recently developed [18], could
bring out more advantages of the technique proposed here.

C. Control Parameter Selection

To illustrate how a good value forθ could be chosen on
the basis of Equation (1), we have fitted a two-component
Gaussian density (it is shown that the mixture of Gaussians
accurately represents both the modal and tail behavior of
the wavelet coefficients [19]):

f(c; p, µ1, σ1, µ2, σ2) = pf(c; µ1, σ1)+(1−p)f(c; µ2, σ2)

wheref(·, µ, σ) denote the Gaussian density with meanµ
and varianceσ2, to the coefficients of the digits dataset
with no truncation. We utilise the EM (Expectation Max-
imization) to obtain the mixture model parameters [20].

As previously noted and shown in Fig. 5, the distribu-
tion of coefficients is roughly symmetric with respect to
the origin and the Gaussian mixture model provide a very
accurate representation both in the central and tail compo-
nents. The best fitting Gaussian has[p, µ1, σ1, µ2, σ2] =
[0.7570, 0.0070, 0.5200, 0.1227, 17, 3660]. We note that
the shape of the theoreticalE{E(θ)} is similar to the
empirical curve displayed in Figure 3. Note, in particular,
that the optimal value ofθ, which is obtained through
Newton-Raphson iterations, is very close to the empirical
optimum.

V. Conclusions

We presented a multi-resolution and multi-bit image
similarity search algorithm. Building on the work by
Jacobset al. [7], we show that it is possible to gain
significant performance improvements, both in terms of
representation vector difference and PR, by 1) simple
extension to multi-bit (specifically two in order not to
sacrifice the other advantages of quantisation, e.g. storage,
computation speed, etc.) representation of wavelet coeffi-
cients and 2) carefully designing the proposed algorithm’s
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Fig. 5. (top:) The normalized histogram and
the optimal two component Gaussian fit, and
(below:) The theoretical cost function and its
first derivative.

control parameter. Our current research efforts indicate
that further improvements can be obtained utilising more
sophisticated multi-resolution inverse index structures.

Appendix A - Proof of Lemma 1

The structure of the proof is as follows. First, we use
a probabilistic bound to express the probability of interest
in terms of an expectation. Then, we break the elements
of the coefficient matrices into two disjoint sets: matching
and non-matching elements. Finally, we upper-bound the
terms appropriately for each set giving an upper-bound on
the desired quantity. In the below,| · | denotes the absolute
value operator for real-valued scalars and the cardinality
for sets. Using the monotonicity of the functionf(x) = x2

for x ≥ 0 and then applying Markov’s inequality to the
probability of interest yields

Pr{||c(I) − c(J)||2 ≥ ε||Sq(I, J)| = m}

= Pr{||c(I) − c(J)||22 ≥ ε2||Sq(I, J)| = m}

≤ ε−2
E{||c(I) − c(J)||22||Sq(I, J)| = m} (3)

Now, using the definition of thè2 norm, equation (3) is
decomposed into:

Pr{||c(I) − c(J)||2 ≥ ε||Sq(I, J)| = m}

≤ ε−2



E







∑

k∈Sq(I,J)

(ck(I) − ck(J))2||Sq(I, J)| = m







+E







∑

k 6∈Sq(I,J)

(ck(I) − ck(J))2||Sq(I, J)| = m









 .

Now note that|ck(I) − ck(J)| ≤ ∆ for k ∈ Sq(I, J).
Moreover,|ck(I)− ck(J)| ≤ 2U since|cij | ≤ U for all k.
Noting that the summands are all bounded and positive
(indicating that the expectation can be moved into the
summations), and utilising the discussed bounds gives:

Pr{||c(I) − c(J)||2 ≥ ε||Sq(I, J)| = m}

≤ ε−2





∑

k∈Sq(I,J)

E
{

(ck(I) − ck(J))2||Sq(I, J)| = m
}

+
∑

k 6∈Sq(I,J)

E
{

(ck(I) − ck(J))2||Sq(I, J)| = m
}





≤ ε−2





∑

k∈Sq(I,J)

∆2 +
∑

k 6∈Sq(I,J)

4U2





= ε−2∆2[m + 4n2(K − m)]

where the last line follows from the fact that|Sq(I, J)| =
K − m where overline denotes the complement of its
argument set. This concludes the proof of the claim.

Appendix B - Proof of Lemma 2

The proof assumes that the database is sufficiently large
for the topJ matches to a query to have all its coefficients
quantised to the same value, i.e.q(c(Ij)) = q(c(Iq)) for
all j = 1, . . . , J and that, without loss of generality, there
is no truncation. We further assume that the coefficients
are statistically independent between and within images.

Observe the following:

E{E(θ)} =
1

NJ

N
∑

i=1

J
∑

j=1

K
∑

k=1

E

{

(ck(Ii) − ck(Ij
i ))2

}

which follows from the definition of thè 2 norm and
the fact that[(ck(Ii) − ck(Ij

i ))2] is bounded and non-
negative for all i, j, k. Given that q(c(Ii)) = q(c(Ij

i ))
for all i, j, let us focus on each term in the summation
above (to simplify the notation we utilisex := ck(Ii),
y := ck(Ij

i ), qk(c(Ii)) := w andqk(c(Ii)) := p to denote
the corresponding random variables):

E
{

(x − y)2|w = p
}

=

∫

x

∫

y

(x − y)2f(x|w = p))f(y|w = p)dxdy



where we used the fact that the coefficients for each image
are independent and thatf(u, v|z) = f(u|z)f(v|z). Let us
now focus on the pdf of interest:

f(x|w = p)) =
∑

m∈M

αm,0f(x|x ∈ Vm) =
∑

m∈M

αm,0gm(x)

where the second equality follows sincew = m ⇒ x ∈
Vm, and we definegm(x) = f(x)/αm,0 if x ∈ Vm

and gm(x) = 0 if x 6∈ Vm. Moreover we defineM =
{−2,−1, 1, 2} and

αm,r(θ) = Pr{w = m} =

∫

x∈Vm

xrf(x)dx.

Substituting this information back into the above gives

E
{

(x − y)2|w = p
}

=
∑

m∈M

α2
m,0

∫

x

∫

y

(x − y)2gm(x)gm(y)dxdy

=
∑

m∈M

∫

x∈Vm

∫

y∈Vm

(x − y)2f(x)f(y)dxdy

:=
∑

m∈M

Λm(x, y; θ)

Thus, the expectation of interest is given by

E{E(θ)|q(c(Ii) = q(c(Ij
i ), ∀i, j} = K

∑

m∈M

Λm(x, y; θ)

sincef(x) = f(y) for all i, j, k. Let us consider the terms
inside the summation:

Λm(x, y; θ) =

∫

x∈Vm

x2f(x)dx

∫

y∈Vm

f(y)dy

+

∫

x∈Vm

f(x)dx

∫

y∈Vm

y2f(y)dy

− 2

∫

x∈Vm

xf(x)dx

∫

y∈Vm

yf(y)dy

= 2αm,0(θ)αm,2(θ) − 2α2
m,1(θ)

where the last line is due to the fact thatx and y obey
the same distribution and definitions given in the Lemma.
Substituting this information into the summation concludes
the proof.

Appendix C - Derivatives of Terms

We consider the derivatives of the terms of interest here.
Consider firstα−2,2(θ) as the derivation of the other terms
follows similarly. Using Leibniz’s rule [21], we obtain

α′
−2,2(θ) =

∂

∂θ

∫ −θ

−∞

c2f(c)dc

=

∫ −θ

−∞

∂c2f(c)

∂θ
dc + θ2f(−θ)

∂

∂θ
(−θ)

= −θ2f(−θ).

We also showed thatα′
−1,2(θ) = θ2f(−θ), α′

1,2(θ) =
θ2f(θ) and α′

2,2(θ) = −θ2f(θ). The second derivatives
are given byα′′

−2,2(θ) = −(2θf(−θ) − f ′(−θ)θ2) where
we used the product rule for derivatives.
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