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ABSTRACT

In this paper we propose to model structural knowledge
about scenes by a Markov random field whose conditional
probabilities are learned from the spatial and topological
relationships observed between regions in a set of train-
ing images. A locally consistent labelling of new scenes
is achieved by relaxing the Markov random field directly,
using conditional probabilities rather than a Gibbs formu-
lation. We validate our approach on several hundreds of
hand-segmented photographs of buildings.

1. INTRODUCTION

Recent years have seen a considerable improvement in the
quality of object classification and recognition. To a large
extent, these improvements are the result of modelling ob-
jects as loose sets of local and largely view-invariant fea-
tures such as SIFT [9], maximally stable regions [10] and
several others [11]. The resulting classifiers exhibit greater
robustness against occlusion and allow fast recognition of
objects in large image collections, e.g. [15], [5], [17], and
[14].

However, a näıve application of non-contextual object
detection models to a multi-class setting is not only ineffi-
cient (as such a system would scale linearly with the number
of classes to be detected), but is also likely to suffer from
low accuracy. To be able to scale to the several thousands
of categories humans discriminate without effort, appear-
ance based object classification needs to be complemented
by techniques that utilise contextual information.

Context may be described as any dependency between
the object to be recognised and everything else in the scene,
be these other objects or the scene as a whole. Experi-
mental evidence suggests that humans do exploit both types
of dependency during object recognition. It is well estab-
lished, for example, that the nature of a scene can be recog-
nised based on low spatial frequency information [13]. Re-
cent neuro-imaging studies support the view that low spa-
tial frequencies are processed in the cortex at a very early

stage during visual recognition [2]. Much like the gist of a
scene, the spatial relationships between objects can be deter-
mined without high frequency information. In fact, Bar and
Aminoff in [1] establish early activation of cortical “context
networks” that appear to store spatial relationships, pointing
to a key role of spatial context as an early facilitator during
object recognition.

Our goal is to learn these spatial and topological rela-
tionships from the data and to utilise this information in a
Markov random field (MRF) model to achieve a consistent
labelling of new scenes. The MRF is defined not over a
pixel array but over the set of regions that correspond to
objects. From training data we learn the conditional proba-
bility distribution over labels for a region, given the objects
in its neighbourhood. These probability distributions are
used during an iterative relaxation scheme to find a proba-
ble realisation of the MRF given the structural relationships
observed in a new scene.

Unlike the MRFs hitherto used in computer vision, the
MRFs we use here are non-Gibbsian, i.e. they cannot be ex-
pressed in terms of cliques and a global cost function. This
is because the interactions between units are directional and
non-symmetric (A influences B differently from how B in-
fluences A). Such MRFs are characteristic of natural com-
plex systems and they may be used to model, for example,
the network of neurons in the human brain, population dy-
namics or company interactions. Complex systems subject
to such unit interactions tend to oscillate between different
states rather than converge to a single state [8]. The human
brain somehow is then able to select from all possible in-
terpretations of a scene the most appropriate one. In this
paper we use a relaxation method appropriate for produc-
ing the states of such an MRF and a criterion that allows us
to select the right state. We validate our approach on 253
photographs of building scenes.

This paper is structured as follows. Section 2 presents
related work. Section 3 introduces the non-Gibbsian model.
Section 4 describes how new scenes are labelled. Section
5 details a series of experiments to validate our approach.
Section 6 concludes the paper.



2. RELATED WORK

Several contextual models for object recognition have been
formulated in recent years. We consider here only those that
are concerned with modelling peer-to-peer dependencies.

A natural choice for probabilistic modelling of local de-
pendencies are Markov random fields, defined either on a
segmentation of the image as in [12, 4] or on a rectangular
grid as in [7, 6, 14]. The authors in [6] and [14] define a con-
ditional random field over individual pixels. In [14], contex-
tual information is incorporated by using the joint boosting
algorithm [16] for learning potential functions and by em-
ploying a novel feature that captures local dependencies in
appearance. Neither work explicitly considers spatial rela-
tionships, although [6] includes the absolute position of a
site in the potential function.

In [4], it is assumed that there are no explicit associa-
tions between terms and image regions in the training data;
rather each image is associated with a bag of words and the
precise term-region associations have to be learned from
training data. On the one hand, this makes the learning
task more difficult. On the other hand, however, it gives
access to a much larger volume of training data as publicly
available collections of annotated photos now abound on the
World Wide Web. The MRF is specified through single and
pair-wise clique potential functions learned from the data.
To make the estimation problem tractable, potential func-
tions are symmetric with respect to their arguments (labels
of adjacent image regions). The model therefore does not
capture asymmetries in the dependency relationship. The
model also does not take into account spatial relationships
and thus is indifferent to whether, for example, a blue patch
is above (sky) or below (sea) another.

In [12], an MRF is defined over image regions by spec-
ifying the clique functions for all types of single and pair-
wise cliques. The potential functions are a weighted sum of
basis functions whose parameters are set manually.

Our work shares the same objectives with [4] and [12].
Unlike these two, however, we allow neighbouring blobs to
influence each other differently depending on their relative
spatial positions and topological relationships. The asym-
metry thereby introduced forbids the definition of cliques
and thus the formulation of the MRF in terms of a Gibbs
distribution. Our model consists of conditional probabilities
that are learned directly from the data using structural infor-
mation as can be obtained from the low spatial frequency
content of an image.

3. THE MODEL

3.1. Learning dependencies of non-Gibbsian MRFs

Let S = {1, . . . , N} index a set of regions in an image. We
assume that each region is associated with a random vari-

ablefi which takes its value from a discrete set of class la-
bels. The fieldF = {fi : i ∈ S} is assumed to be Markov-
ian in the sense that the probabilistic dependencies among
fi are restricted to spatial neighbourhoodsNi, that is,

P (fi|fS−i, R) = P (fi|fNi
, Ri), (1)

whereR denotes the matrix of pair-wise spatial and topo-
logical relationships between regions, andRi only the row
pertaining to regioni. We assume, therefore, that the con-
ditional dependencies depend not only on the identity of the
neighbouring regions but also on their relative spatial and
topological relationships with theith region. This is an im-
portant component of our model as it allows us to capture
the non-isotropic nature of many scenes. For convenience,
we refer to a particular observation pair(fNi

, Ri) as the
neighbourhood configurationor simply configuration, and
to theith region associated with it as thefocal region. Fig-
ure 1 illustrates these notions.

We refer to the model as a non-Gibbsian Markov ran-
dom field (NG-MRF) as it cannot be expressed in terms of
cliques.
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Fig. 1. Schematic representation of the configuration
(fNi

, Ri) (left); the conditional probability distribution over
all labels for the focal region (dotted circle),P (fi|fNi

, Ri),
as obtained from training images (right). The most frequent
label associated with the focal region is ‘roof’, followed by
‘window’ and ‘chimney’.

For this work, we manually segment all our images into
regions using an extension of the LabelMe tool1. The long-
term goal, of course, is to learn configurations and asso-
ciated probabilities from automatically derived segmenta-
tions.

3.2. Learning optimal neighbourhood sizes

Since we need to learn the conditional distributions from a
relatively small training set, we limit the neighbourhood to
at most six regions: the neighbour above, below, to the left
and to the right of regioni, as well as the regions contained

1http://labelme.csail.mit.edu



in and containing regioni (e.g. windows embedded in a
facade). Two regions are neighbours if they are separated
by no more than a certain distance threshold. The distance
between two regionsA,B ⊂ R

2 is computed as

d(A,B) =
∑

i∈{x,y}

min
a∈A,b∈B

|ai − bi|, (2)

whereax represents thex coordinate of pointa.
Other choices of a distance function are conceivable.

This particular one has the effect that two regions need not
be the same to score a zero distance (thus, it is not a met-
ric). In particular, regions with zero distance can be (i)
overlapping, (ii) exactly adjacent or (iii) contained in one
another. For example, a wall that surrounds a number of
windows has a zero distance from each of them. If regions
are non-overlapping, the distance along each direction is
given by the smallest Euclidean distance between any two
points of the two regions. This has the advantage that the
distance between two regions is not affected by their re-
spective sizes (as would be the case under many metrics
such as the Hausdorff metric). The optimal distance cut-
off, learned through cross-validation, turns out to be zero.
For a zero distance cutoff, the neighbourhood consists of all
regions whose bounding boxes overlap with or touch the fo-
cal region. Were the regions regularly arranged like pixels,
the resulting neighbourhood would be the familiar 8-pixel
neighbourhood. Figure 2 (left) depicts the distribution over
configuration sizes for the optimal zero cutoff. The right
figure illustrates how the configurations become larger as
the distance cutoff increases.

Given a distance threshold, the conditional probability
distributions (Equation 1) are learned by noting for each re-
gion i observed in a set of training images its correspond-
ing configuration(fNi

, Ri). The results can conveniently
be stored in the form of a hashtable with the key being a
particular configuration and the value being the conditional
probabilities over labels for the focal region. Given a re-
gion with known neighbourhood configuration, we can thus
rapidly obtain a probability distribution over labels at the fo-
cal region. To ensure that the joint distribution of the MRF
is nowhere zero, we add a small positive value to each zero-
valued conditional probability and subsequently normalise.

4. LABELLING OF NEW SCENES

This section details how to obtain probable realisations of
the MRF given a new scene in which we observe certain
spatial and topological relationships (R in Equation 1). We
make the assumption that scenes have been segmented into
regions where each region corresponds to an object to be
recognised. How these regions may be obtained automati-
cally in the first place is a problem in its own right and out-
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Fig. 2. Frequency distribution of different configuration
sizes ford = 0 for which the majority involves three regions
(left). As we increase the distance threshold, the configura-
tions become larger (right).

side the scope of this work. We obtain regions by manually
segmenting images.

4.1. Local relaxation

A standard technique to find a probable realisation of an
MRF is simulated annealing which allows a stochastic label
update at a site to be retained with a certain probabilityPr

even if the new realisation of the field is less probable. By
letting Pr converge to zero, the field eventually settles at
a maximum of the joint probability distribution. In other
words, simulated annealing strives to find solutions that are
globally maximally consistent.

Because of the impossibility to define cliques, our non-
Gibbsian field is formulated purely in terms of local, condi-
tional probability distributions (Equation 1). We aim to find
labellings that are locally consistent by repeatedly sampling
from these conditional distributions, i.e.

f
(n+1)
i ∼ P (fi|f (n)

Ni
, Ri).

In order to iteratively update regions based on the cur-
rent labelling of their neighbourhood, we partition the set
of regions into a set of codings. The idea of a coding was
first introduced by Besag [3] in the context of the iterated
conditional mode algorithm for MRF parameter estimation.
A coding is equivalent to the concept of vertex colouring of
a graph, that is, it constitutes a partitioning of the set of ver-
tices (= regions) so that no two adjacent vertices (= neigh-
bouring regions) belong to the same partition. Because of
the assumption of Markovianity, the likelihood over vertices
of the same colour reduces to a simple product of the respec-
tive conditional probabilities. We employ a greedy strategy
to achieve a vertex colouring, in which vertices are visited
in order of decreasing vertex degree (i.e. number of neigh-
bours) and each vertex is assigned the first possible colour
from a list of colours (see Figure 3 for an example).

4.2. Choosing a solution

Regions are updated within each coding by retrieving and
sampling from the probability distribution correspondingto



Fig. 3. Hand-segmented and hand-labelled training image
(left). Vertex colouring of the neighbourhood graph (right),
vertices with the same number have non-overlapping neigh-
bourhoods.

that region’s current neighbourhood configuration. If the
configuration has not been seen before, because it was not
observed in the training set, the new label is drawn from a
uniform distribution. This scheme on its own is not guaran-
teed to converge and indeed it seems to have no tendency to
settle on a particular solution (left graph of figure 4). Fol-
lowing each update, we compute for each codingCj

P (fCj
|R) =

∏

i∈Cj

P (fi|fNi
, R). (3)

Our estimate of the overall probability of the data is ob-
tained by averaging overP (fCj

|R). Because the codings
are generally of different size, we cannot employ the arith-
metic average that is suitable for inference on regular MRFs.
Instead we estimate the joint probability as

P (f1, . . . , fN ) ≈ 1

N

∑

j

|Ci|





∏

i∈Cj

P (fi|fNi
, R)





1

|Cj |

.

(4)
Let p be the ratio between the estimated joint probability af-
ter and before the update. We accept the change with prob-
ability 1 if p > 1 and with probabilityp

1

T otherwise. T

is the temperature parameter whose value decreases expo-
nentially with time. Figure 4 shows an example of how the
value given by Equation 4 increases over successive itera-
tions (one iteration involving the update of all labels).

5. EXPERIMENTS

We collected 253 images of buildings from the World Wide
Web. Each image was manually segmented into regions that
corresponded to parts of a building or parts of the environ-
ment such as sky or vegetation. Each region was labelled
manually using an annotation tool similar to LabelMe. The
complete dataset contained nearly 6,000 regions covering a
dozen of classes.2

2http://www.commsp.ee.ic.ac.uk/∼dheesch/academic/ngmrf/data
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Fig. 4. Dynamics of stochastic updating process with and
without maximisation ofP (fi, . . . , fN ) (Equation 4). The
dotted line marks the value associated with the true la-
belling. The continuous line shows the proportion of mis-
classified regions. In both diagrams, regions are updated
based on the conditional probabilities. For the left diagram,
a new labelling is always accepted. For the right diagram, a
labelling is accepted if it improves the current solution orif
it is worse by no more than a value that decreases with time.

For our experiments, we use the following seven la-
bels with respective frequencies: ‘window’ (0.507), ‘chim-
ney’ (0.054), ‘roof’ (0.053), ‘door’ (0.087), ‘wall’ (0.089) ,
‘dormer’ (0.015), ‘sky’ (0.055), ‘other’ (0.14). The ‘other’
label aggregates all other labels used during annotation but
not used explicitly in the classification task. We report per-
formance of different algorithms in terms of classification
accuracy, i.e. the proportion of regions that have been la-
belled correctly. To estimate how the algorithm will be able
to cope with data not included in the training set, we use the
leave-one-out method of cross-validation, i.e. we remove
one image from the set at a time to be our test image and
train on the remaining 252 images.

5.1. Comparison with other methods

We compare our non-Gibbsian MRF model with three other
classification models, a simple maximum prior classifer, a
non-contextual Bayes classifier and a Markov random field
that ignores spatial relationships.

5.1.1. Maximum prior

Our simplest benchmark is a maximum prior classifier that
assigns to each region the most frequently occuring label
(i.e. ’window’).

5.1.2. Non-contextual Bayes classifier

As a non-contextual benchmark we implemented a Parzen
classifier that classifies regions based on the posterior prob-
abilities given measurements of a number of low-level fea-
tures from the region. We use a set of three features that
can easily be obtained from the low-frequency content of



a scene: the mean intensity, the normalised area of the re-
gion and its vertical position. For each feature, the poste-
rior probabilities over classes is given by Bayes rule with
the class-conditional densities being approximated usinga
Parzen window with a Gaussian kernel function centred on
a set of class exemplars,Cc

p(x|c) ∝
∑

xi∈Cc

1√
2πσ

exp

(

−|x − xi|
2σ2

)

, (5)

whereσ is learned through cross-validation. We assume
each feature to be conditionally independent, given the class,
and thus compute the overall class probability density as a
product of feature-specific posteriors.

5.1.3. Isotropic MRF (ISO-MRF)

To assess the added value one gains by considering explic-
itly the spatial and topological relationships between neigh-
bouring regions, we implemented a simpler Markov random
field in which the Markovian dependencies depend only on
the labels of neighbouring regions but not on their spatial
relationships. The isotropic MRF model thus assumes that
a neighbour of a certain focal region has the same effect on
the latter regardless of its relative position, i.e. in the nota-
tion of section 3.1,

P (fi|fS−i, R) = P (fi|fNi
).

5.1.4. Results

Table 1 shows the results for the Parzen classifier and the
ISO-MRF and NG-MRF models. Note that we use the out-
put of the Parzen classifier to initialise the labelling for the
MRF models. In order to assess the variability in perfor-
mance, we have opted for a leave-one-out strategy. The re-
sults are the average over 253 images with 5,682 regions.

The best results are obtained by the non-Gibbsian MRF,
followed closely by the non-contextual Parzen classifier. The
performance of the isotropic MRF is notably worse even in
comparison with the simple maximum prior method.

Model Accuracy Std Dev Known Configurations
Max Prior 0.521 0.0006 —

Parzen 0.690 0.125 —
ISO-MRF 0.434 0.145 0.9769
NG-MRF 0.729 0.124 0.8949

Table 1. Comparison of different methods using 5,682
blobs for training. Prior: each region is given the same,
most frequently occuring label; Parzen: non-contextual
classification; ISO-MRF: isotropic Markov random field;
NG-MRF: non-Gibbsian Markov random field. Perfor-
mance is measured in terms of the fraction of regions clas-
sified correctly. The last column gives the fraction of con-
figurations in the test data observed in the training set.

The confusion matrix (Table 2) reveals that the greatest
accuracy is achieved for windows. That many other classes
are misclassified as windows may be attributed to the strong
‘window’ prior that influences the result through the non-
contextual Parzen initialisation. Doors, in particular, are
frequently mistaken for windows as these two classes ex-
hibit very similar spatial relationships with other building
parts whilst having markedly different priors.

True label Predicted label
wi ch ro do wa do sk ot

window 2848 50 5 81 0 0 25 131
chimney 20 151 50 5 0 5 10 15

roof 25 20 101 0 30 10 25 76
door 348 5 0 20 5 0 0 96
wall 40 0 25 5 292 10 10 91

dormer 30 15 20 5 5 15 5 0
sky 15 10 10 0 5 5 192 30

other 217 15 15 40 30 5 25 343

Table 2. Confusion matrix for NG-MRF labelling. The
top row entries are indexed by the first two letters of the
respective label.

5.2. Robustness to initialisation

We investigate two different initialisation schemes in ad-
dition to the Parzen initialisation to assess the robustness
of the contextual inference to initial conditions. The first
scheme assigns to each region the most frequently occur-
ing label (i.e. ‘window’), the second draws labels randomly
from the prior distribution, i.e. it will result in a similarini-
tial distribution of classes within the image but with random
assignment of classes to regions. The results are shown in
table 3. While we notice a performance degradation com-
pared with non-contextual initialisation, the contextualmodel
continues to improve over the new baselines of 0.52 and
0.32, respectively.

Initialisation Initial NG-MRF (Mean and Std Dev)
Parzen 0.690 0.729 (0.124)

Max Prior 0.521 0.654 (0.127)
Random 0.315 0.621 (0.135)

Table 3. Dependence of performance on initial conditions.
The second column shows the accuracy after initialisation
with the three different schemes described in the text. The
initial accuracy of the random assignment can be shown to
be1 − ∑

c pc(1 − pc) wherepc is the prior of thecth class.

6. CONCLUSIONS

We presented a Markov random field model for contextual
scene labelling. A region’s context includes not only the



identity of neighbouring regions but also their relative spa-
tial and topological relationships, thus rendering the model
capable of capturing the non-isotropic nature of typical scenes.
The asymmetry makes the field non-Gibbsian as it no longer
admits to a factorisation into cliques. The model is there-
fore formulated directly in terms of conditional distribu-
tions that are learned from a training set of annotated and
segmented images. Given a new scene, the Markov ran-
dom field is relaxed by iteratively sampling from these con-
ditional probability distributions. We proposed an objec-
tive function to help identify good labellings. The objec-
tive function is based on the vertex colouring of the region
neighbourhood graph and is not the global cost function
usually associated with Gibbsian MRFs. A comparison with
a non-contextual and a contextual classifier demonstrates
the validity of the approach and the importance of utilising
relational information for scene labelling.

There are several ways to take this work further. First,
learning is presently based on manually segmented and la-
belled images. A next step is to work on automatically seg-
mented, but possibly hand-labelled images. Second, rela-
tions are modelled as crisp concepts which leads to quanti-
sation error and sensitivity to small translations of individ-
ual regions. The idea of fuzzy relations might prove valu-
able here. Third, the proposed model assumes that all labels
are equally likely for the focal region, should the associated
configuration not have been seen before. We thus make no
attempt to generalise from observed configurations to new
ones. As some configurations are supersets of smaller con-
figurations, or are otherwise similar to each other, we be-
lieve that by endowing the configuration space with some
distance metric, more accurate label distributions could be
inferred for previously unseen configurations.
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