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Abstract

Suppose organisms need to engage in a particular action exactly once during some fixed period of time. Further suppose they can time

this action to optimise their fitness based on the expected current payoff and the probability distribution of later payoffs. For an example

we consider the timing of the annual nuptial flight in eusocial insects. Using two population genetics models, we ask whether stochasticity

leads to evolutionary conflict between the queen and her offspring. We find that the winning phenotype is independent of who controls

the timing. The best response to any non-equilibrium population strategy is the same in both control scenarios, a result that carries over

to the diploid case. Although inter-generational conflict is therefore ruled out, the models support a previous observation that at

equilibrium some of the offspring have a lower expected payoff than others. By measuring fitness in terms of relative reproductive

success, we show that all individuals are in fact equally well off making group-selectionist arguments unnecessary. As such, the models

should improve our understanding of the difficult conceptual problem of the unit of natural selection in stochastic environments.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Environmental stochasticity describes variation across
time that affects all individuals alike. It is a well-established
result from population genetics models (Dempster, 1955;
Cohen, 1966; Lewontin and Cohen, 1969; Tuljapurkar,
1989) that the maximand of natural selection under such
conditions is the geometric mean rate of growth,

Yn

i¼1

gpi

i , (1)

where gi is the rate of growth in terms of the absolute
number of offspring in the ith state of nature (occurring
with probability pi). Since the absolute number of offspring
is commonly seen as a reasonable measure of fitness, this
product is often referred to as the geometric mean fitness.
Because of its sensitivity to small values of g, genotypes
which do fairly well across all environmental states are
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expected to prosper relative to genotypes that excel in some
environments but fail in others. This observation has given
rise to the view that under environmental stochasticity a
successful genotype should reduce variability in the number
of offspring across environmental states, a strategy that has
come to be known as bet-hedging (Seger and Brockmann,
1987).
Because individual fitness, when measured in terms of

the absolute number of offspring of a bet-hedging
genotype, may vary considerably between different pheno-
types and thus between groups of individuals, the
geometric mean result seems to imply that natural selection
is not acting on individual fitness but on the fitness of the
genotype (or the body of individuals sharing the same
genotype). Fitness variability may then be seen as an
expression of altruism on the part of the individual as has
been suggested by Cooper and Kaplan (1982) when they
state that bet-hedging constitutes ‘‘a sacrifice of immediate
individual fitness for the sake of the long term advantage of
the genotype’’ (Cooper and Kaplan, 1982, p. 145) and
others have argued similarly (Ellner, 1986).

www.elsevier.com/locate/ytpbi
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It is only relatively recently with papers by McNamara
(1995), Sasaki and Ellner (1995), Haccou and Iwasa (1995),
and more explicitly by Grafen (1999), that ‘‘individual-as-
maximising-agent’’ analogies for population genetics mod-
els with environmental stochasticity have been established.
These allow us to view the individual as the focus of
natural selection and suggest that all phenotypes of a bet-
hedging genotype are in fact equally well off if only one
employs the appropriate fitness measure.

The existence of such analogies does not preclude the
possibility of a conflict between generations over the
optimal phenotype distribution. Since the early work by
Trivers (1974) the problem of evolutionary conflict has
been dealt with extensively (Godfray, 1995). Yet, with the
exception of Westoby (1981) and Ellner (1986), few papers
have investigated its connection with stochastic environ-
ments. The existence of such conflict under stochasticity
has first been suggested by Westoby (1981) in the context of
seed dormancy. Phenotypic models predict that the most
successful plants let a certain proportion of their seeds
overwinter which clearly conflicts with the intuitive,
individualistic view that ‘‘each and every seed ought to
germinate at the single opportunity which gives the best
chance of growing to maturity.’’ (Westoby, 1981, p. 883).

The basic setting in which we investigate the problem of
bet-hedging and evolutionary conflict is simple. We assume
that individuals need to take some fitness-critical action
exactly once during some period of time and that they can
time this action to optimise their fitness based on the
expected current payoff and the probability distribution of
future payoffs. We set up two population genetics models
in which we confer control over the timing to, respectively,
the parent and the offspring. We then compare the
evolutionary outcomes in terms of the distribution of the
times chosen by individuals.

We have selected a particular problem for illustration:
the timing of the nuptial flight in ants. The problem
exhibits all the essential features we seek to model. The
nuptial flight is a unique event in the life-cycle of the
individual reproductive, and often of the colony as well.
The flights are also periods of intense selection pressure
often taking place only under a very narrow range of
weather conditions (Boomsa and Leusink, 1981). If there is
scope for evolutionary conflict, the colonial structure of ant
societies provides the ideal setting for such conflict to
manifest itself. Clearly, the models are a great abstraction
not only because the life-cycle of ants is typically much
more varied and complex, but also because most species
are decidedly non-annual and have overlapping genera-
tions. The simplicity of the models comes with the prospect
of illuminating some general principles that might be at
work in more realistic settings where they tend to be
occluded by the complexity of the problem.

The paper is structured as follows. We develop the two
population genetics models in Section 2 and show that
parents and offspring agree over the best response to any
non-equilibrium population strategy. In Section 3, we use
the models to demonstrate how the fitness variability
across different phenotypes disappears upon measuring
fitness not in terms of absolute reproductive success but in
terms of the reproductive value as suggested by Grafen
(1999). This result highlights the importance of employing
appropriate fitness measures when analysing and interpret-
ing the results of evolutionary models. It suggests that the
notion of natural selection maximising individual fitness
remains meaningful in stochastic models. We summarise
and discuss the results in Section 4.
2. The models

The life-cycle of the modelled organism comprises the
three following stages:
(1)
 male and female reproductives accumulate in colonies,

(2)
 the nuptial flight takes place during which prospective

queens mate,

(3)
 queens found new colonies, males die.
The two models are very similar and only differ in whether
it is the queen’s or the offspring’s genotype that determines
the strategy adopted by the offspring. In both models we
assume that there exist two points in time tx and ty at
exactly one of which the nuptial flight needs to take place.
We allow nature at ty to be in one of only two states, which
are independent of the state at tx. We show in Appendix A
that the results readily generalise to any distribution of
states at ty. The environmental state is the same for the
entire population. The absolute reproductive success,
which we will refer to as the payoff of an alate choosing
tx and ty, is denoted by x and y, respectively, where y is a
dichotomous random variable taking value y1 with
probability r and value y2 with probability 1� r. Without
loss of generality we demand that y1py2, and we will
occasionally refer to years with payoffs y2 and y1

informally as good and bad years, respectively. It is further
assumed that the decision of whether or not to select tx is
informed by an accurate assessment of the environmental
state at tx. We consider a one-locus system where the trait
under consideration is the probability s (henceforth
referred to as the split-ratio) of an individual flying at tx.
To find the equilibrium split-ratio, we determine the spread
conditions of a rare and dominant allele, A, with
phenotypic effect s in a monomorphic population with
phenotype ~s associated with the focal locus. The evolutio-
narily stable strategy (ESS) is then found as the phenotype
that resists invasion by any other deviant phenotypes when
near fixation. For the second model it will be necessary to
distinguish between the frequency of A in males, pm, and in
females, pf , as these are generally different. We will also
make this distinction in the first model but only to show
that the two are, in fact, the same.
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2.1. Model with offspring control

After assessing the conditions at tx, each alate decides
independently from all others whether or not to take action
at tx. Rejecting tx implies acceptance of ty. With p being
small, we need to consider only three types of matings with
relative frequencies aa� a (� 1), Aa� a (� 2pf ) and aa�

A (� pm). The mating combinatorics and descendant
phenotypes are shown in Table 1. The split-ratios for
the different genotypes are given in the bottom row
(the split-ratios in the right column are those under
parental control and will be of importance for the second
model).

The expected payoffs for the 2 years are obtained as the
average over the payoffs at tx and ty weighted by the
probability of an alate choosing either time, i.e.

F ðsÞ ¼
F 1ðsÞ ¼ sxþ ð1� sÞy1 with probability r;

F 2ðsÞ ¼ sxþ ð1� sÞy2 with probability 1� r:

(

Since y varies from generation to generation, so does F .
The sequence of random variables form a discrete-time
random process fF nðsÞ : n ¼ 0; 1; . . .g where n is the
generation index. We shall often drop the variable s and
write F for F ðsÞ and ~F for F ð~sÞ. Note that we use two types
of subscripts in conjunction with F and ~F . One type
specifies the different values taken by the random variable
(F1 and F2), the other specifies the generation number: Fn

denotes the random variable in generation n. The correct
meaning will be evident from the context.

With these conventions and from Table 1, the frequen-
cies of A in males and females in generation nþ 1 are

p
f
nþ1 ¼

1

2
pm

n þ pf
n

� �F n

~F n

,

pm
nþ1 ¼ pf Fn

~Fn

,

with nX0 and p
f
0 ¼ pm

0 ¼ p0. It is easily seen that if pf
n ¼ pm

n

the two will continue to be the same for all subse-
quent generations. But even if the two start off differ-
ently, they will quickly converge. We may therefore replace
the second recurrence equation for males with the
following

pnþ1 ¼ pn

F n

~F n

; nX0,
Table 1

Mating combinatorics and offspring phenotypes

aa Aa a A split-ratio

(queen control)

aa� a ð1Þ 1 0 1 0 ~s
aa� A ðpmÞ 0 1 1 0 ~s

Aa� a ð2pf Þ 1=2 1=2 1=2 1=2 s

split-ratio (alate

control)

~s s ~s s
where pn ¼ pf
n ¼ pm

n . The equation of motion for A then
becomes

pN ¼ p0 �
YN�1
n¼0

F n

~F n

,

with the average increase amounting to

w ¼ lim
N!1

pN

p0

� �1=N

¼ lim
N!1

YN�1
n¼0

F n

~F n

 !1=N

.

It is useful now to take the logarithm on both sides. A split-
ratio s that maximises w also maximises

W ¼ ln w ¼ lim
N!1

1

N

XN�1
n¼0

ln
Fn

~Fn

� �
.

Because Fn= ~Fn are identically and independently distrib-
uted random variables (strictly speaking stochastic func-
tions of the random variable y), for large N the average
over generations can be replaced by the expectation with
respect to the distribution of y,

W ðsÞ ¼ Ey ln
F ðsÞ

~F

� �� �
¼ r ln

F 1ðsÞ

~F1

� �
þ ð1� rÞ ln

F2ðsÞ

~F 2

� �
,

where ~F only depends on the population strategy ~s. The
standard condition for an ESS at s� is that W ðsÞpW ðs�Þ

for all s (Maynard Smith and Price, 1973), that is s� is the
best response to itself when prevailing in the population.
The best response is found by solving qW=qs ¼ 0 which
leads to the intermediate expression

rF 01ðsÞF2ðsÞ ¼ ðr� 1ÞF 02ðsÞF1ðsÞ. (2)

Using the expressions of F1 and F2 from above, one finds
the best response as

s� ¼
rxy1 � rxy2 � xy1 þ y1y2

x2 � xy1 � xy2 þ y1y2

. (3)

This gives the ESS if x 2 ½y1; y2� (since q2W=qs2o0), else
Eq. (3) describes a minimum. In particular, if xoy1, the
value of s� is larger than 1 and the optimal split-ratio is 0. If
x4y2, the value of s� is smaller than 0 and the optimal
split-ratio is 1. Both results are, in close accord with
intuition.
It is worth noting that this is precisely the result obtained

from a purely phenotypic model for a haploid asexual
population with the fitness for an s-strategist given by sxþ

ð1� sÞy1 in a bad year and sxþ ð1� sÞy2 in a good year
with the optimal strategy maximising W ðsÞ ¼ ½sxþ

ð1� sÞy1�
r � ½sxþ ð1� sÞy2�

ð1�rÞ.
It is instructive to consider the range of x values for

which, given a particular distribution of y, the optimal
split-ratio satisfies 0os�o1, i.e. for which some alates fly at
tx and others at ty. We can rearrange Eq. (3) thus

s� ¼
y1y2ð1� x=HÞ

xðx�AÞ þ y1y2ð1� x=HÞ
, (4)
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Fig. 2. Spread of two alleles in a population dominated by a non-

equilibrium split-ratio. When the environment at ty is highly variable

(y1 ¼ 0:1, y2 ¼ 0:9), it pays to allocate a few offspring to tx (x ¼ 0:3)
although it is on average worse. A strategy that favours the second time

point (unbroken line) does better than the ESS (dotted line) in most years,

but a few unfavourable years suffice for its frequency to vanish.
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where A ¼ ry1 þ ð1� rÞy2 is the arithmetic mean and H ¼

ðr=y1 þ ð1� rÞ=y2Þ
�1 is the harmonic mean of y1 and y2.

From Eq. (4) we can derive a simple decision rule for alates
at tx: if xXA then s� ¼ 1, if xpH then s� ¼ 0. The first
condition implies that alates should always choose the
early point if the arithmetic average of the expected payoff
at the later time is smaller than the current payoff, x. This
part of the decision rule appears to be in accord with the
idea of natural selection maximising individual fitness: if
there is nothing to be gained on average from waiting,
don’t wait.

The condition for which s� ¼ 0 is more interesting. For
while alates are expected to choose tx if the average payoff
at ty is lower, the reverse does not hold. If the offspring can
expect a higher average payoff at ty the model predicts a
split-ratio below 1 but not necessarily 0, although the latter
is seemingly the obvious choice from an individual alate’s
perspective. The second condition informs us that s� takes
the value 0 only when x is smaller than the harmonic mean
of y1 and y2 (which is always smaller than or equal to the
arithmetic mean). Let D be the difference between the
arithmetic and the harmonic mean, i.e.

D ¼ ry1 þ ð1� rÞy2 �
y1y2

ð1� rÞy1 þ ry2

¼
ðy1 � y2Þ

2
ðr� r2Þ

rðy2 � y1Þ þ y1

.

Thus, if y has zero variance (i.e. y1 ¼ y2) then D ¼ 0 and
the optimal strategy is pure. As the variance increases, so
does D and the ESS becomes mixed with tx being favoured
under an increasingly wide range of x values. Fig. 1 shows
the shape of the transition between s ¼ 0 and 1 for different
values of y1 and y2 when both are equally likely (r ¼ 0:5).
The mean is kept constant with the variance increasing
from 0.0 (y1 ¼ y2 ¼ 0:5) to 0.2401 (y1 ¼ 0:01; y2 ¼ 0:99).
Notice that, as the variance of y increases, the harmonic
mean decreases and a growing number of alates begin to
accept a lower payoff. We here seem to witness a trade-off
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Fig. 1. Graph showing how the range of x values for which the optimal

strategy is mixed (0os�o1) widens as the variance of y, the payoff at ty,

increases. For zero variance the optimal split ratio is either 0 or 1.
between the mean and the variance in the absolute number
of offspring, hence the notion of bet-hedging. As noted by
Grafen (1999), this trade-off takes place, strictly speaking,
only at the level of the genotype (or the body of individuals
sharing the same genotype) not at the level of any
particular individual, since situations can be conceived in
which alleles specifying different degrees of variability in
the number of offspring are selectively neutral at the level
of the individual. Since ‘‘bet-hedging’’ is an intentional
term, it may be misconstrued as a description of an
optimisation principle applying to individuals, which is a
role it cannot fulfil, and therefore may better be avoided.
We show in Appendix A that this simple decision rule

generalises to any distribution pðyÞ of environmental states
at ty so that the optimal strategy is mixed whenever
x 2�xmin;xmax½, where

xmin ¼
Xn

i¼1

pðyiÞ

yi

 !�1
and xmax ¼

Xn

i¼1

pðyiÞyi. (5)

Fig. 2 shows a typical example of the spread of two initially
rare alleles in a non-equilibrium population for the case of
highly variable payoffs at ty. The strategy that maximises
average payoff across different years (by avoiding tx

altogether) spreads in good years but loses disproportio-
nately in bad years leading to eventual extinction (see also
caption).

2.2. Model with parental control

We now turn to the situation where the split-ratio is
determined by the parental genotype. We again consider
the spread of A in a population of colonies with
homozygous aa queens of phenotype ~s. The mating table
and the genotype frequencies of the offspring are those of
the first model but the phenotypes of the offspring are now
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given by the right column of Table 1. Again we assume A

to be rare.
Recall that in the first model the mathematical treatment

was greatly simplified by the fact that at any one time the
frequencies of A are the same in both sexes and so we could
restrict our attention to one sex. Under parental control,
the rate of change in frequency of A is generally different in
males and females. That this should be so can be seen
intuitively by observing that some of the young Aa queens
are reared in colonies with aa mothers, but all A males are
reared in colonies with Aa mothers. As a consequence, A, if
favoured over the wildtype, will spread faster in males than
in females. From Table 1, we obtain the two following
recurrence equations for the frequency of A in males (pm)
and females (pf ),

pm
nþ1 ¼

pf
nF n

~F n

and p
f
nþ1 ¼

pm
n
~F n þ pf

nFn

2 ~Fn

. (6)

We can separate the pm and pf by combining the two
equations to form two stochastic second-order recurrence
equations. Writing gn ¼ Fn=ð2 ~FnÞ we obtain

pm
nþ1 ¼ gnðp

m
n þ pm

n�1Þ and p
f
nþ1 ¼ gnpf

n þ gn�1p
f
n�1.

Each of these can be solved separately to find the strategy s

that maximises the average rate of increase in each sex
given some population strategy ~s. We do this for the first
equation in Appendix B. We find that the optimal response
s satisfies

rF 01ðsÞ
~F2 ¼ ð1� rÞF 02ðsÞ

~F1.

This is just Eq. (2). We can now argue that this must also
be the split-ratio that maximises the rate of increase in
females by noting that the two recurrence equations, Eq.
(6), imply that

p
f
nþ1 ¼

1

2
pm

nþ1 þ pm
n

� �
,

that is, the frequency in females in one generation lies
halfway between the frequencies in that and the previous
generation in males. A strategy that maximises the spread
of A in males automatically maximises its spread in
females. The optimal response to some population strategy
~s is the same as under offspring control and so is the ESS,
given by Eq. (3). We may conclude therefore that there is
no inter-generational conflict over the timing of reproduc-
tion, neither at equilibrium nor away from it. That this is
not merely a result of haplodiploidy but is of more general
validity is demonstrated in Appendix C where we derive the
same optimality condition for both control scenarios in the
case of diploid inheritance.

3. Fitness variability at the ESS

In both models a mixed strategy is favoured over a pure
strategy under a broad range of conditions. In particular,
the optimal strategy is mixed whenever the payoff
associated with the early time point, tx, lies between the
harmonic mean and the arithmetic mean of the payoffs
associated with the later time point, ty. The more variable
the environment at ty, the more likely are alates to choose
tx under ‘‘suboptimal’’ conditions even if the expected
payoff at ty may be substantially greater than that at tx.
Note from Fig. 1, for example, that for highly variable
payoffs at ty (variance of 0.24) some alates choose the early
time even under conditions that confer less than a tenth of
the payoff that could be expected at the later time.
This variability in the absolute number of offspring is

well known from other models dealing with stochastic
environments and seems to elude any interpretation in
terms of a maximisation principle centred around the
individual. In a recent series of papers (Grafen, 1999,
2000), attention has been drawn to the fact that such an
‘‘individual-as-maximising-agent’’ analogy can be found in
the form of the expected reproductive value as introduced
by Fisher (1930), or the arithmetic average of the relative
reproductive success. The analogy is significant not only
because it paves the way towards an elegant unification of
the diverse strands of optimality theory in evolutionary
biology (e.g Parker and Maynard Smith, 1990), but also
because it re-emphasises the central role of the individual in
evolutionary processes.
In our models the phenotype distribution that maximises

the geometric mean of the absolute reproductive success
does indeed maximise the arithmetic average of the relative
reproductive success, as we shall now show. In the second
model, the average reproductive value R of an s-queen in
an ~s-dominated population with N queens is equal to

RðsÞ ¼ r
F1ðsÞ

N ~F1

þ ð1� rÞ
F2ðsÞ

N ~F2

.

The derivative with respect to s is

qR

qs
¼

1

N
r

F 01ðsÞ

~F 1

þ ð1� rÞ
F 02ðsÞ

~F 2

� �
,

which has an internal optimum at s satisfying

rF 01ðsÞ
~F2 ¼ ðr� 1ÞF2ðsÞ

0 ~F1. (7)

The ESS is the best response to itself, so at equilibrium
s ¼ ~s and Eq. (7) becomes

rF 01ðsÞF2ðsÞ ¼ ðr� 1ÞF 02ðsÞF1ðsÞ. (8)

This is just Eq. (2) which describes the condition for the
optimal split-ratio when alates control the timing. Thus,
the ESS maximises R. It is but a small step from Eq. (8) to
show that at equilibrium all alates have the same fitness
when measured in terms of the expected relative number of
offspring. If one replaces in Eq. (8) F 0i by x� yi, we can
rearrange it to give

rx

F1
þ
ð1� rÞx

F2
¼

ry1
F 1
þ
ð1� rÞy2

F2
.

But the LHS and the RHS are now just the expected
relative payoffs of an alate choosing tx and ty, respectively.
Thus, the timing decision can be understood without
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taking recourse to group selectionist arguments and the
notion of individual sacrifice. It can justly be viewed as an
adaptation at the level of the individual. More informally,
‘‘an offspring produced for a rare and little-populated
eventuality may regret that their day of glory is unlikely to
arise, but this will be exactly compensated by the extent
of their relative triumph should it do so.’’ (Grafen, 1999,
p. 802).

4. Discussion

We have presented two simple population genetics
models to understand how uncertainty about future
environmental conditions affects the timing of some
fitness-critical action and to what extent the results depend
on whether the timing decision is under parental or
offspring control. The particular situation modelled is the
nuptial flight in ants as there is some evidence that its
success depends critically on the weather conditions at the
time of flying, and because the colonial organisation
provides an ideal setting for manipulation of the offspring.

Concerning the first question, we have shown that
individuals should not all wait until the later time even if
the expected payoff exceeds the present payoff (x). Rather,
individuals should continue to choose the present time with
a non-zero probability until the current payoff is smaller
than the harmonic mean of future payoffs. We obtain a
simple decision rule whereby the split-ratio is pure if x is
smaller than the harmonic mean (s ¼ 0) or larger than the
arithmetic mean (s ¼ 1) of the payoff at the second time
point. We have further shown that the apparent fitness
variability among the offspring at the ESS is compatible
with the idea of individual fitness maximisation and that
neither group selection nor altruism need to be invoked if
fitness is measured in terms of the arithmetic average of
relative reproductive success.

We explicitly model the problem of evolutionary conflict
by giving control over the timing to either the parent or the
offspring. We find that the best response of individuals to a
non-equilibrium split-ratio is the same in both control
scenarios and that, therefore, our models do not support
the view frequently associated with bet-hedging that
stochastic environments provide scope for inter-genera-
tional conflict.

Many complications of the basic model are conceivable:
our decision problem is effectively one of binary choice.
One could instead assume, more realistically, that nature
varies according to a continuous-time random process
where reproduction can take place anywhere along a
continuum as has been assumed in Satake et al. (2001).
Also, it seems reasonable to assume that the payoffs of the
offspring are modulated through factors such as local mate
competition (Hamilton, 1967) and local resource competi-
tion (Clark, 1978). These complications have proven useful
in modelling offspring dispersion and sex-ratio (Frank,
1987; Wild and Taylor, 2004, and references therein).
Finally, it can often be advantageous to synchronise timing
decisions with that of others. In our particular case, a
reproductive would gain little when flying under perfect
weather conditions if no-one else joins. The selective
advantage of synchronisation would lead towards greater
temporal cohesion of the optimum phenotype distribution
than predicted on the basis of Eq. (5). We venture to
believe that in all these extensions our qualitative conclu-
sions will retain their validity.
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Appendix A. Derivation of general decision rule, Eq. (5)

Let x be the payoff at tx and y1; y2; . . . ; yn the n possible
payoffs at ty with probability distribution pðyÞ. The
geometric mean fitness of a genotype with a split-ratio s,
GðsÞ, is

GðsÞ ¼ F
pðy1Þ
1 � F

pðy2Þ
2 � � � � � FpðynÞ

n ,

where Fi ¼ sxþ ð1� sÞyi, i ¼ 1; . . . ; n. Let HðsÞ ¼ ln GðsÞ

then

HðsÞ0 ¼
Xn

i¼1

pðyiÞ
F 0i
F i

� �
.

Setting HðsÞ0 equal to zero and rearranging one obtains

Xn

i¼1

pðyiÞF
0
i

Yn

j¼1
jai

F j

0
B@

1
CA ¼ 0. (A.1)

For s ¼ 1, Fj reduces to x and thus

xn
Xn

i¼1

pðyiÞðx� yiÞ ¼ 0.

With
Pn

i¼1pðyiÞ ¼ 1, this simplifies to

x ¼
Xn

i¼1

pðyiÞyi,

which is the arithmetic mean of the payoffs at ty.
For s ¼ 0, Fi reduces to yi and thus Eq. (A.1) becomes

Xn

i¼1

pðyiÞðx� yiÞ
Yn

j¼1
jai

yj

0
B@

1
CA ¼ 0.

Dividing both sides by
Qn
j¼1

yj yieldsXn

i¼1

pðyiÞðx� yiÞ

yi

� �
¼ 0

and after some rearrangement

x
Xn

i¼1

pðyiÞ

yi

¼
Xn

i¼1

pðyiÞ.
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With
P

pðyiÞ ¼ 1, this becomes

x ¼
Xn

i¼1

pðyiÞ

yi

 !�1
,

which is the harmonic mean of the payoffs at ty.

Appendix B. Optimal response under parental control

The frequency of allele A in males and females under
queen control in generation n is given by the following
recurrence equation:

pnþ1 ¼ gnðpn þ pn�1Þ; nX1

with initial conditions p0 ¼ p and p1 ¼ 2g0p0, and gn being
identically and independently distributed random variables
with distribution

g ¼

F1

2 ~F1
¼

sxþð1�sÞy1
2ð~sxþð1�~sÞy1Þ

with probability r;

F2

2 ~F2
¼

sxþð1�sÞy2
2ð~sxþð1�~sÞy2Þ

with probability 1� r:

8<
:

Let hpni be the expectation of pn over the distribution of g.
For example, hp0i ¼ p0 because it is fixed, hp1i can take two
values depending on the value of g0. We now define the
generating function

PðxÞ ¼
X1
n¼0

hpnix
n.

Multiplying each side of the recurrence equation by xn and
summing over all nX1 givesX
nX1

pnþ1x
n ¼

X
nX1

gnpnxn þ
X
nX1

gnpn�1xn,

which can be rewritten as

1

x

X
nX0

pnxn � p1x� p0

" #
¼
X
nX0

gnpnxn � g0p0

þ x
X
nX0

gnþ1pnxn.

Now taking expectation on each side leads to

1

x

X
nX0

hpnix
n � hp1i �

p0

x
¼
X
nX0

hgihpnix
n � hgip0

þ x
X
nX0

hgihpnix
n.

This can be rewritten in terms of our generating function
PðxÞ as

1

x
PðxÞ � hp1i �

hp0i

x
¼ hgiPðxÞ � hgip0 þ xhgiPðxÞ.

With hp1i ¼ 2hgip0 and after rearrangement we get

PðxÞ ¼
p0hgixþ p0

1� x2hgi � xhgi
¼

p0

hgi
hgixþ 1

1
hgi � x2 � x

 !
.

The values hpni are the coefficients of the power series
expansion of PðxÞ, by the definition. The power series
expansion is found by first writing PðxÞ in terms of partial
fractions

PðxÞ ¼
p0

hgi
H2

x� b2
�

H1

x� b1

� �
,

where

H1 ¼
1þ hgib1

b1 � b2
; H2 ¼

1þ hgib2

b1 � b2
,

b1 ¼ �
1

2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4

hgi

s
; b2 ¼ �

1

2
�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4

hgi

s
.

The power series expansion of each partial fraction is a
geometric series. In particular, we have

H1

x� b1
¼ �

X1
n¼0

H1

bnþ1
1

xn

 !

and

H2

x� b2
¼ �

X1
n¼0

H2

bnþ1
2

xn

 !
.

Putting everything together, we find the coefficients of the
power series PðxÞ ¼

P1
n¼0hpnix

n as

hpni ¼
p0

hgi
H1

bnþ1
1

�
H2

bnþ1
2

 !
.

We are interested in the expected rate of increase per
generation. This can be found as

R ¼ lim
n!1

hpnþ1i

hpni
.

Substituting our expressions for H1 and H2, we find

R ¼ lim
n!1

hpnþ1i

hpni

¼ lim
n!1

ð1þ hgib1Þb
nþ2
2 � ð1þ hgib2Þb

nþ2
1

ð1þ hgib1Þb
nþ2
2 b1 � ð1þ hgib2Þb

nþ2
1 b2

¼
1

b1
¼

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

hgi

q
� 1

.

Finally, we need to find the strategy s that maximises R

given some population strategy ~s. Since hgi is a function of
s, then by the chain rule,

qR

qs
¼

qR

qhgi
dhgi
ds
¼ 0

and therefore we require

dhgi
ds
¼ 0.

Recall that hgi ¼ rF1= ~F1 þ ð1� rÞF2= ~F2 and that only F 1

and F 2 depend on s. Writing F 01 and F 02 for the derivatives
with respect to s this is

qhgi
qs
¼ r

F 01
~F1

þ ð1� rÞ
F 02
~F 2

¼ 0,
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Table 2

Mating combinatorics under diploidy

aa Aa split-ratio

(parental control)

aa� aa ð1Þ 1 0 ~s
Aa� aa ð4pÞ 1=2 1=2 s

split-ratio (offspring

control)

~s s

D. Heesch, M. Little / Theoretical Population Biology 69 (2006) 121–128128
whence we derive the same condition as for the case of
offspring control

rF 01
~F2 ¼ ð1� rÞF 02

~F 1.

and the maximum rate of spread is found either at s ¼ 0 or
1 with the ESS, s�, given by solving the last equation for
~sð¼ s�Þ

s� ¼
rxy1 � rxy2 � xy1 þ y1y2

x2 � xy1 � xy2 þ y1y2

.

Appendix C. The case of diploid inheritance

For parental control we assume that the offspring exhibit
the dominant phenotype if at least one of the parents
carries the deviant allele A. Unlike in the genetically
asymmetric case of haplodiploidy, we do not need to
distinguish between the frequencies of A in males and
females. The mating combinatorics for the diploid case are
those in Table 2.

From the table we see that the control scenarios are
indistinguishable. In both cases a heterozygous offspring
will adopt a split-ratio of s because one of its parents will
have to carry the A allele. The frequency of p in generation
ðnþ 1Þ is just

pnþ1 ¼
1

2
� 4p�

1

2
�

Fn

~Fn

¼ pn

F n

~F n

,

which is the same as in the haplodiploid case.
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