Next.js Cookbook

Learn how to build scalable and high-performance
apps from scratch

Andrei Tazetdinov

www.bpbonline.com

ii
Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork

119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-453

www.bpbonline.com

iii

Dedicated to

My beloved wife:
Eugenie
&
My Daughter Alice

iv

About the Author

Andrei Tazetdinov, is a highly experienced software engineer with over 16 years
of experience in the industry. Currently working at IBM IX as a Senior Frontend
Developer and Technical Architect, Andrei Tazetdinov has a passion for creating
innovative and user-friendly applications using cutting-edge technology.

Throughout Andrei Tazetdinov’s career, he has worked on numerous projects
across various industries, ranging from healthcare to finance. Their experience
has given them a deep understanding of the software development process, from
ideation to deployment.

In addition to his professional work, Andrei Tazetdinov is also passionate about
sharing their knowledge with others. He was a teacher at Samsung Coding School
for several years and worked with teenagers to guide them and create their very
first Android applications using Java.

With this book, Andrei Tazetdinov hopes to help aspiring developers and
experienced professionals alike to become proficient in building full-stack
applications using NextJS. His wealth of knowledge and experience in the field
makes him the perfect guide for anyone looking to start or advance their career as
a full-stack developer.

Thank you for choosing this book

About the Reviewer

Denis Bezrukov is a dedicated Frontend Developer with a rich professional
background in the field of Forex trading platforms. His experience spans 4 years,
during which he has cultivated a robust knowledge baseD and skill set in the
development of complex applications utilizing React, Redux.

As a core contributor to the Rome tool project, a linter and formatter written in
Rust, Denis has honed his ability to create modern web developers tools.

vi

Acknowledgements

I would like to express my heartfelt gratitude to my family and friend, who have
always been my pillars of strength and support. Their unwavering love and
encouragement have helped me navigate through the ups and downs of life, and
have been instrumental in shaping me into the person I am today.

In particular, I am immensely grateful to my daughter Alice, whose boundless
curiosity and infectious energy have been a constant source of inspiration for
me. Her insatiable thirst for knowledge and her relentless pursuit of excellence
have reminded me of the importance of curiosity and determination, and have
challenged me to strive for greatness in my own work.

I am also indebted to my colleagues, mentors, and friends, who have generously
shared their time, expertise, and insights with me throughout my journey. Their
wisdom, guidance, and constructive feedback have helped me refine my ideas,
sharpen my skills, and broaden my horizons. I want to gratefully thank Denis
Bezrukov from JetBrains for his support and help with this book review.

Finally, I would like to express my appreciation to all the readers of this book,
whose interest and enthusiasm have motivated me to share my knowledge and
insights with the world. It is my hope that this book will inspire and inform and
that it will contribute to a deeper understanding and appreciation of the topics it
explores.

vii

Preface

As a full-stack developer, you need to master a variety of programming languages,
frameworks, and tools to build robust, scalable, and user-friendly web applications.
In recent years, Next]S has emerged as one of the most popular and powerful
frameworks for building server-side-rendered React applications. With its intuitive
API, powerful features, and vibrant community, Next]S has become the go-to
choice for developers who want to create high-performance web applications with
ease.

This book is designed to help you get started with Next]S and take your full-
stack development skills to the next level. Whether you are a seasoned developer
looking to expand your skillset or a newcomer to the world of web development,
this book will provide you with the knowledge, tools, and techniques you need
to build modern, dynamic web applications that meet the needs of today’s users.

In this book, we will cover a wide range of topics, including:
e The basics of Next]JS and its core features
e How to create and configure a Next]S application from scratch
e The power of server-side rendering and its benefits
e Best practices for styling, routing, and data fetching with NextJS
e Advanced topics such as testing, optimization, and deployment
e AWS Amplify as a hosting provider and many more topics

We will also provide you with plenty of hands-on examples, practical exercises
that will help you improve your skills and confidence as a full-stack developer.
By the end of this book, you will be able to create sophisticated web applications
that leverage the power of Next]S and React, and you will be well on your way to
a successful career in full-stack development.

So, let’s get started and explore the exciting world of Next]S!

Chapter 1: Warming up with NextJS - In this chapter, readers will be introduced
to Next]S and will learn how to set up their development environment. They will
be guided through the installation of the necessary software and tools, and will

viii

learn how to create a new Next]S application from scratch. Readers will also learn
the basics of NextJS, including how to work with the NextJS file system, how to
create pages and components, and how to use the built-in routing system. By the
end of this chapter, readers will have created their first Next]S application and will
be ready to dive deeper into the framework’s features and capabilities.

Chapter 2: Using design patterns in Next]S - In this chapter, readers will learn
how to use design patterns to optimize their Next]S application development.
The chapter will cover several common design patterns, including the Singleton
pattern, the Strategy pattern, and the Builder pattern. Readers will learn how
these patterns can be applied to Next]S to improve the efficiency and scalability
of their applications. The chapter will also provide practical examples of how
to implement these patterns in Next]S, with step-by-step instructions and code
snippets. By the end of this chapter, readers will have a solid understanding of
how to apply design patterns in Next]S and will be able to create more robust and
efficient web applications.

Chapter 3: Authorization in a glance with Next]S - In this chapter, readers will
learn about authorization in Next]S and how to implement it in their applications.
The chapter will cover the basics of authentication and authorization, and will
provide an overview of different authentication methods that can be used in
Next]JS. Readers will also learn how to create a basic authorization system using
Next]S’s built-in authentication features. Additionally, the chapter will cover best
practices for securing user data and preventing unauthorized access to sensitive
information. By the end of this chapter, readers will have a solid understanding
of how to implement authorization in NextJS and will be able to create secure and
reliable web applications.

Chapter 4: Server-side power of Next]S - In this chapter, readers will learn about
the server-side rendering features of NextJS and how to take advantage of them
in their applications. The chapter will cover the benefits of server-side rendering,
including improved performance, SEO, and user experience. Readers will also
learn how to set up and configure server-side rendering in NextJS, as well as how
to work with dynamic data and API calls in a server-side rendered application.
Additionally, the chapter will cover best practices for optimizing server-side

ix

rendered applications and handling errors. By the end of this chapter, readers will
have a solid understanding of how to use server-side rendering in NextJS to create
fast, dynamic, and highly scalable web applications.

Chapter 5: Using state management in Next]S - In this chapter, readers will learn
about state management in Next]S and how to implement it using the popular
Redux library. The chapter will cover the basics of state management, including
why it’s important and how it works. Readers will also learn how to set up and
configure Redux in NextJS, as well as how to work with Redux actions, reducers,
and stores. Additionally, the chapter will cover best practices for optimizing state
management in NextJS, including how to handle asynchronous actions and how to
use middleware. By the end of this chapter, readers will have a solid understanding
of how to use state management with Redux in Next]S and will be able to create
complex and dynamic web applications with ease.

Chapter 6: Implementing internal pages using Next]JS - In this chapter, readers
will learn how to create internal pages in Next]JS and how to implement a basic
CRUD system for managing user data. The chapter will cover the basics of creating
dynamic pages in Next]S, including how to work with dynamic routes and how
to pass data between pages. Readers will also learn how to set up and configure
a database, and how to use Next]JS’s built-in API routes to handle requests and
responses. Additionally, the chapter will cover best practices for optimizing internal
pages in Next]S, including how to use caching and how to handle errors. By the
end of this chapter, readers will have a solid understanding of how to create and
manage internal pages in Next]S and will be able to build complex and powerful
web applications.

Chapter 7: The superpower of E2E testing in Next]JS - In this chapter, readers
will learn about end-to-end (E2E) testing in NextJS and how to implement it using
the Cypress and Playwright testing frameworks. The chapter will cover the basics
of E2E testing, including why it's important and how it works. Readers will also
learn how to set up and configure Cypress and Playwright in Next]S, as well as
how to write and run tests for a Next]S application. Additionally, the chapter will
cover best practices for optimizing E2E testing in Next]S, including how to handle
asynchronous requests and how to use test-driven development principles. By the

end of this chapter, readers will have a solid understanding of how to use E2E
testing with Cypress and Playwright in Next]S and will be able to create robust
and reliable web applications.

Chapter 8: Deploying Next]JS project to production - In this chapter, readers
will learn how to deploy their Next]S application to production using the AWS
Amplify platform. The chapter will cover the basics of deployment, including
why it’s important and how it works. Readers will also learn how to set up and
configure their AWS Amplify account, and how to connect their Next]JS application
to the platform. Additionally, the chapter will cover best practices for optimizing
deployment in Next]S, including how to use environment variables. By the end of
this chapter, readers will have a solid understanding of how to deploy their Next]S
application to production using AWS Amplify and will be able to launch their
application with confidence.

Chapter 9: Mastering optimization tools for Next]S - In this chapter, readers will
learn about optimization tools for Next]S and how to use them to improve the search
engine optimization (SEO) of their application. The chapter will cover the basics
of SEO, including why it's important and how it works. Readers will also learn
how to set up and configure optimization tools and Next]S Image Optimization.
Additionally, the chapter will cover best practices for optimizing SEO in Next]S,
including how to use metadata and structured data, and how to improve page
speed. By the end of this chapter, readers will have a solid understanding of how
to use optimization tools for Next]S to improve the SEO of their application and
will be able to maximize their online visibility.

xi

Coloured Images

Please follow the link to download the
Coloured Images of the book:

https://rebrand.ly/g7kjstb

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’” Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free technical

articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

xii

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then
see and use your unbiased opinion to make purchase decisions. We at BPB
can understand what you think about our products, and our authors can see
your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com
El

e
Elu

J

xiii

Table of Contents

1. Warming up with Next]S ..., 1
INTrOAUCHION ...t sas 1
SEIUCTUTE .. 1
ODJECHIVES ...ttt ettt 2
Setup and run Next]S......ccoiiiiiiiiccc e 2

Installing using npm and the latest version of Node]JS.............cccccccocuvuvecunnes 2
For the older NP VETSIONS........c.cvveveeeeiececueieieieinieteeeietese et 3
How to run the project for local development.............cccoovvvveucuccucucunn. 6
How to customize WebPacKccoveuriciniciniciricncceeceeeeieeeeeeseeseneenens 6
How to use TypeScript int Next]S........cccoovvvvviiiiiininiiiiiiiiiiiiciccseeeecic, 9
How 10 1456 SCSS 111 INEXLIS ..o 10
How to enable and use styled components...............ccccucvnicvniccinicennes 10
How to create @ multipage appc.ceuveeeerrurecuerrinecieirireceseeeceeseeeseeesesenseenes 12
How to change pages - ROUtING tOOLScocueviueiiecineeciriciricieceeiecieecneeenne 14
How to change the page params state without running data
fetching Methods......c.ovcuvciriciccc e 18
CONCIUSION .. 20

2. Using design patterns in Next]S.......cccovvvviinvinninniinsinninninninnnnncnnenncnneenes 21
INtrOAUCHION ...t 21
SEIUCTUTE .. 22
ODJECHIVES ...ttt ettt 22
Optimizing your SPA and router with patternsccccoevueeivcvcniiiccincinnnnes 22

Writing Singleton pattern for data objects.............ccccvvvcvivicicinicininicinnnns 22
Writing builder pattern to operate the data...............c.cccevvvvecvcccennnennnes 28
Writing Strategy pattern for page changing intent...............ccocvvcuvevicunnnes 38
Using test-driven development for safety and management.........ccccoceeucuruncs 42
Configuring the TDD enVirONtmentcvveveveeueueueeeceisietnininenisesieeeneneneneaes 43
Writing your first component it a test-firSt Waycccccecccevrereneereneenenen. 48

CONICIUSION 1ttt ettt et e e et e e e e eeeeeee s e eeseeaeeesueseeeseeaneensessesnsesseensesaseenes 53

xiv

3. Authorization in a glance with NextJSccccocvviivinninnininnininniniinninnens 55
INtrOAUCHION ... 55
SEIUCTUTE ... 55
ODJECHIVES ...ttt ettt 56
Creating the authorization form ... 56

Mocking your first component using a pencil and your ideas...................... 56
Splitting components into generic COMPONENLScccvuvvucuvivvucuniricueunnnnn. 59
Separating global styles from local styles for any component 61
Creating the code logic for the authorization form................cccvvccunnnce. 62
Writing tests for the authorization form ... 63
From unit test to Next]S component..........cooceeveenneincenncnneennceneeeenenes 64
Following the TDD way in creating COMPONENES............oeeveveeueuerereececvaenenn. 64
Debugging tests while developingcoceececcoieinininnneeececcceen, 76
Choosing the Next SLEPS WAYc.cucueeeirinieirisiririeieieieeietttstnesenisesieseseseeneaes 78
Advantages of the REST way authorization...........cccccecciviniviccncininiciccincnnee. 78
Advantages of the GraphQL way authorization..........c.cceecccenvccrnnerccrnnecnees 78
CONCIUSION ..ttt 79

4. Server-side power of Next]S.......ccccvvvririinirnninnncnnennninninnennncnneessessessnes 81
INErOAUCHION ...ttt 81
SEIUCHUTE .. 82
ODBJECHIVES ...t 83
Using NextJS as an API SEIVer......cccovviiiiiiinininiiiiciiiicccciieeceinnes 83

Creating the simple Next]S API routing StrUCtUrec.coevververeeeererencnaes 83
Creating the simple Next]S REST APL........ooeeeiiiieininnrnirieieeeencan 85
Generating an authorization token for the USercccovvvreereecrcuccucaes 87
Using Singleton, Builder, and Strategy patterns in API construction............. 88
Baking Singleton for APL............ccccccivniininiiiiicsiicesice s 88
Baking Strategy for APcccccvnicviniciniiiiiiiceicesce s 89
Using the Apollo client for NeXt]S......ccceveemncenniceninccnnecceneeennenenes 99
Creating the model for the Next]S application..............ccceevvvveveucucucncucacs 99
Writing the connecting system for Apollo...........cocceveeunecunecinecinecineenneennes 100
Reusing API from the previous recipe for Apollo...........cccccovvrvenevececnnnn. 103
Setting up an Apollo client for Next]S........c.ccccovvievnicviniccinicciniccnans 104

CONICIUSION 1ttt et et eeeete et e et eeaeseaeeseeeseesaesesesnesneesseeesesnseseesseen 106

X0

5. Using state management in Next]S......ccccvvviinnivnnnninnninnninneennieenneenns 107
INTrOAUCHION ... 107
SEIUCTUTE c..vivi e 107
ODJECHIVES ...ttt caene 108
Using state-management tools in applications..........cccccecvucivciriuriniciccincnnee. 108
Setting up Redux in NexXt]S.....cccoviiinicniecerccercceeeceeeese e 108
Writing tests for the store before we start coding.........ccocceuveeuvecurecrnecunecnnes 109
Creating Redux store objects in NeXt]S......cococcceurnicrnnccnnncceneccreereceens 114
Using the store for the authorization in our application..........ccccoeueeuvvcuence. 117
Connecting data API to state management.........ococceeeeececrrerencecuemneneereenencnens 120
CONCIUSION ..ttt 121

6. Implementing internal pages using Next]S........cccccevevvinivninreinenscnensnene 123
INEFOAUCHION ...ttt 123
SEIUCHUTE .. 123

ODJECHIVES.......oveetiteisies ettt ettt 124
Creating the publishing system for the food blog..........ccccoeuviiviininininnnnnnce 124
Mocking - List of articles and article description pagecoccceuverccrvurennees 125

Creating mocks for internal PAgescooevveeeeeeeeuecccininininsreeeeenes 125

Splitting internal pages into COMPONENLScoouevreereeeererereicciinenenenens 128
Creating the application structure for application pages.........ccccceeeeueveurunce. 130
Creating atoms and moleculescoocccerncnnncninnccnccecceeeees 133

ALOMS .ot 134

MOLECULES ... 143
Creating the TDD flow for all coding structurescccoeueeueciveuviriciccuncnnce 147

Writing tests for PAge COMPONENLES.........cvveveeueuereereririiicieieieieerseeeeenenns 148

WIIting teStS fOT SEOTEovuuiiiiiciiiciciicie e 149

WIiting tests for APL..........ccooviivinicininiiciiieciceecce s 149
Creating some API endpoints for the applicationc.cccoeveveceererccrrenecaees 149
Creating internal application Pagescccceeeureerrererreerreernecrseereeereeeneenenns 150

Creating an article liSt PAGEcccccuvieicivinicininicniicecece 150

Create an article item PAGe..............cccccuviiucuviniciiiiicieicicceceescens 153
Creating a CRUD system for articles.........covecennecnnnccnnncceneccreenecnens 156

Separate public and private areas with Next]S.......ccocoveeeeeccovninnenennnn 156

xvi

Redux store for data state and editccccevvnnicicceenrnneeccenns 158
Updating data in APlL...........ccccccvuviiiiniiininiiciciicciccsiceecce s 161
Creating a multilingual tool for application in Next]S.......cccccoeviviviirinunnnne. 162
CONCIUSION ..ttt 165
7. The superpower of E2E testing in Next]Sccccevuvvirvivnenncnecnnensecsnccsncnnes 167
INEFOAUCHION ...ttt 167
SEIUCHUIE .. 167
ODBJECHIVES ...t 168
Prepare the application for the production release..........cccooevverrnenenccccnnnee 168
Choosing an End-to-End testing framework..........ccccccocvvviccincininininincnnnnne. 169
Setup Cypress for Next]S.........cccvveeuviiciniiiciiiiicisicceisc e 170
Setup playwright for Next]S..........cccccviviiivinicininicisinicsiicesiceeiceans 177
Writing the first e2e test with Playwright..........ccccoveiirincinncinccccee 182
Creating more tests for the applicationccceeeveveuvevcrencnicncniceceen. 184
Covering the QUINOTIZATION.ccccovucuvieiiciiiiiciiiiice e, 184
Covering internal PAGESccccuvviucuvieiciniiicisisicie e 186
CONCIUSION ...t 189
8. Deploying Next]S project to production............coeeeevienienninneinecsnensennnnne 191
INTrOAUCHIONveiiiiii s 191
SEIUCTUTE .. 191
ODJECHIVES ...ttt eane 192
Preparing the project to fly into production..........ccceeecuveeerercericirencrnencnnenen. 192
Choosing the “perfect” render for the application...............cccccvvcucuvuunee. 192
Measuring performance and maintainability applications in Next]S. 194
Connecting Sentry for application MONitoring.............ccccovvvevevvccirinunn. 198
Using AWS Amplify to host our applicationc.ccceveeccueirnccunnenccrrenencnee 202
Understanding Amplify admin ared...............ccecccccvninnnnnceccrccenn, 203
Creating the data models for the applicAtionccccccceevevevnnrveeucnnes 207
Creating an authentication flow with AWScccccoeveevevinnnnnnnneeenes 208
Adding data in the admin area.........cccceoeeveeineeineenicnecneeereeeeeennes 209
Using cloud functions for applicationccccceveeccueinnccrrnncceeneccreenecaens 209
Reuse cloud functions with layer functionality.........cccccovvverrcrrncirincrincrnnncn. 218

Finishing the backend with amplifyccccovveveinncnnccccccceeee 221

Host the application in the cloud and the first run.........cccoevvecvvvccirnecnee. 227
CONCIUSION ...t 229
9. Mastering optimization tools for Next]JS.........cccevvvviiviniininseininsncniennnnne 231
INTrOAUCHION ... 231
SEIUCTUTE .. 231
ODJECHIVES ...ttt 232
How to get more performance from superfast Next]S.......cccccoeeerrurerrucrnunce. 232
Using dynamic load for the client side to reduce the first load................... 232
How to optimize images with COMPONENLs............cccovuvveivinicuniceucieieiicnnians 237
How to bake server-side COMpPONentscccocceeueueueueueurieernnnesenneseeeeeenes 240
Creating SEO-friendly optimizationcccccccvviciccinininicincininiscccnes 244
CONCIUSION ...t 247

CHAPTER 1
Warming up with
Next]S

“The beginning is always today.”
— Mary Shelley

Introduction

Greetings, a future chef in the Next]S kitchen. In this chapter, we will begin our
journey into the world of sophisticated software development using the most
advanced web application framework to date.

I will not delve into the intricacies of the initial setup of the environment. If you
are here and ready to cook real masterpieces, then the environment necessary for
installing and configuring the nodejs is already on your PC (or Mac, depending on
preferences of course).

Structure
¢ Setup and run Next]S

o Install using npm and the latest version of NodeJS
o For the older npm versions

» How to run the project for local development?

2 Next.js Cookbook

* How to customize Webpack
o How to use Typescript in Next]S?
o How to use SCSS in Next]S
¢ How to create a multipage app?
e How to change pages. Routing tools
o How to change page params state without running data fetching methods

e Conclusion

Objectives

In this chapter, we will install and set up the local development environment for the
easy start of the Next]S application. After you finish this chapter, you will set up and
run your new NextJS application and make as many configurations as you possibly
need for the first start. You will learn how to create a multi-page application with the
framework. Also, you will learn how to navigate between pages and how you can
manage the router properties.

Setup and run NextJS

For better performance and stability, I recommend a version of the NPM module
equal to 5.2+ or higher. You can also use the older npm-install-way if you prefer it
for some reason or you cannot install the latest version of NodeJS

Let us check several ways to install and set up your first project with NextJS:

In this book we will use yarn as an alternative to npm. Yarn provides a
number of features that are not available in npm, such as faster and more
reliable dependency installation, improved network performance, and better
security features. You can collect it using this link https:/ / yarnpkg.com /

Installing using npm and the latest version of
NodeJS

Just type the commands into your console. Please note that in this book we will use
Typescript to produce the application. For the correct setup please use the commands
as follow:

Warming up with Next]S 3

yarn create next-app --typescript

npx create-next-app@latest --typescript

Figure 1.1: Commands to install Next]S

After the installation is complete, your project will contain all files and configurations
to quick-start your new project and learn Next]JS.

create-next-app contains some other useful commands for project creation
that will help you to understand how to use a framework. There is a
possibility to use the GitHub URL as an example for your first application.
The command should look like this:

yarn create next-app -example https://github.com/vercel/next.js/tree/
canary/examples/auth0

In this case, you will create a blank project with AuthO possibility inside with
configured API and pages to a successful login. Please check this link for more
examples: https://github.com/vercel/next.js/tree/canary/examples

If you have already set up your project this way you can skip the next section.

For the older npm versions

For the older npm versions, use these commands to start the new project.

After successful setup and creation of the project do not forget to add the Typescript
to your project in case when you have created the project by this way:

npm i1 -g create-next-app

create-next-app nextjs-cookbook

Figure 1.2: Manual project creation

To add the Typescript please follow these instructions

4 Next.js Cookbook

Create the file in the root of the project using your IDE or with the CLI command:
1. touch tsconfig.json for Linux/macOS

2. echo > tsconfig.json for Windows

Next]S will automatically do all required setup for the Typescript you will need only
start your project using commands:

yarn dev or npm run dev

After that you will probably see answers about requirements for the project if you
do not have them installed into your project yet eg. @types/react, @types/node, @
types/react-dom. Just follow the instructions to complete the setup for your project

In the end, the whole setup will be complete. Please note several things:

You will see a file with this name in your root directory next-env.d.ts. Do
not remove it or change the file body for any reason. It is auto-generated
by the Typescript compiler. Please do not make any changes in the file next-
env.d.ts use the instruction below instead. Your configuration file tsconfig.
json contains information about the types that you will use in your project.
Just add a new type file into the include section to use it

Find below the example of the tsconfig.json file that you should have as a result:

{
"compilerOptions": {
Stapgeis:ues5is
"Lib": [
"dom",
"dom.iterable",
"esnext"
1,
"allow]s": 5
"skipLibCheck": ,
EsthRicten: s
"forceConsistentCasingInFileNames": 5
"noEmit": .
"esModulelInterop": 5
"module": "esnext",
"moduleResolution”: "node",
"resolveJsonModule": s
"isolatedModules": 5
"jsx": "preserve",
"incremental”:
b
“i{nclude": ["next-env.d.ts","any-new-types.d.ts","*x/x ts", "x*/*x tsx"],
"exclude": ["node_modules"]

)

Figure 1.3: Code in tsconfig.json file

Warming up with Next]S 5

Why do we ever need this feature? Let us use imagination a bit to understand this
feature.

The general difference between using the *.ts files and *.d.ts files is that the second
one is used to declare a type definition. Still, not much clearance because we can
use both file types to declare a type. Ok, how about if we could declare the existing
JavaScript function for TypeScript? For example, we have a function like this in the
printHello.js file:

const printHello = (name) => "Hello ${name}"

export { printHello }

Figure 1.4: Code in printHello.ts file

And as a declaration in file printHello.d.ts will be the following:

declare function printHello(name: string): string

Figure 1.5: Code in printHello.d.ts file

Now we can use function printHello without any compilation errors as it is declared
in the file with declarations.

If you made a setup in a modern and automatic way you can skip the next section
and proceed with the first commands to start.

Next JS in general works with a page-oriented architecture so the basic element in
the framework is a page. The page has its URL link from its creation. To create your
first page please check that you have a pages folder in your root folder of the project.
The main page (or the default page) will always be called the index.tsx. In the next
sections we will figure out how to rewrite and redirect pages but the name of the
default page is always index.

6 Next.js Cookbook

The next step is to create the file index.tsx in the pages folder with this code inside:

function MainPage() {
return <div>Your cookbook with tasty recipes. Yammy</div>

}

export default MainPage

Figure 1.6: Code in index.tsx file

Please check if you have these commands in your package.json file. If you do not
have them then please create:

"scripts": {
"dev": "next dev",

"build": "next build",
"start": "next start"

}

Figure 1.7: Code in package.json file

How to run the project for local development
Just run the command in your project root: yarn dev or npm run dev

After that, you can proceed with the URL from your CLI By default, it is http://
localhost:3000

How to customize WebPack

Let us initialize the problem of why we would ever need to customize the WebPack
for our project.

Imagine that we have different behavior in development and production mode. For
example, we can use different environments and secret keys for each kind of build.
To see it we need it to inject some logic into the build process or create logic in
components.

Warming up with Next]S 7

We do not recommend the implementation of such logic inside the components
themselves and highly recommend separating this behavior in the build process

To make changes in WebPack for Next]S let us check what changes we can do in the
NextJS configuration. That can be done using the next. config. js file.

As in the case with declaration configuration, we highly recommend using separated
files for the environment variables that will be changed with the development
process. So please create files like .env.local or .env.development to change
variables while your project is in support conditions

For example, we can create the process variable that will be used in the development
or production flow. The body of your env file should look like this:

SECRET="NEXTJSCookBook2022"

Figure 1.8: Variable declaration in env file

Your WebPack updates can be done in file next. config. js:

const nextConfig = {
reactStrictMode: .
env: {
SECRET: process.env.SECRET
}
}

module.exports = nextConfig

Figure 1.9: Code in next.config.js file

As you can see, we have added the process variable that can be used in our project.
Please note that adding or changing any variable should be followed with a
development server restart (or production rebuild, depending on what flow do you
currently use).

After that, you will be able to use your variable in the code like this or with any flow
you wish

8 Next.js Cookbook

®

function SecretPage() {

return <div>Your secre L 10t tell i1t to anyone</div>

export default Examp

Figure 1.10: Code in secret page file

Now we can insert some logic into WebPack in our configuration to act only in
development start, as an example:

4 . |
L LN

const nextConfig = {
reactStrictMode: 5
styledComponents: 5
webpack: (config, { buildId, dev, isServer, defaultLoaders, webpack }) => {
if(dev) {
console.log('Is development flow ', process.env.SECRET)

}

return config

SECRET: process.env.SECRET

Figure 1.11: Code in next.config.js file

You can inject any logic here or update the config with new plugins that you want
to use like this:

[XN
const nextConfig = {
reactStrictMode: 5
styledComponents: 5
webpack: (config, { buildId, dev, isServer, defaultLoaders, webpack }) => {
if(dev) {
console.log('Is development flow ', process.env.SECRET)
}
const newConfig = config.plugins.push(<YOUR-PLUGINS-CONFIGURATIONS>)

return newConfig
I8
env: {
SECRET: process.env.SECRET
}
}

ydule.exports = nextConfig

Figure 1.12: Code in next.config.js file

Warming up with Next]S 9

Let us look into an example of how you can use it with a real plugin. So let us check
this one for example https://github.com/vincent-herlemont/next-aws-lambda-
webpack-plugin. Using this plugin you can use AWS Lambda functions as pages
for your application. To implement this plugin you will need to install it first:

00
yarn add --dev next-aws-lambda-webpack-plugin
// or if you prefer NPM

npm install --save-dev next-aws-lambda-webpack-plugin

Figure 1.13: Command to install plugin into your project

And then change the WebPack configuration like this to enable it:

const nextConfig = {
reactStrictMode: n
styledComponents: t 5
webpack: (config, nextConfig) => {
const newConfiguration = config.plugins.push(new GenerateAwsLambda(nextConfig))
return newConfiguration

}}
env: {
SECRET: process.env.SECRET
b
}
module.exports = nextConfig

Figure 1.14: Code in next.config.js file

How to use TypeScript in Next]S

In the last Next]S version, there is no need for a special configuration of WebPack for
using TypeScript

What if I have a Next]S project that was created with |S only?

If you have a Next]S project that was created without typescript just add a tsconfig.
json file into your root and rerun your development server with yarn run dev (or

npm run dev) after that NextJS will show you the next steps to proceed. You will
need to enter these commands to fully configure your project

10 Next.js Cookbook

yarn add --dev typescript @types/react @types/node

npm install --save-dev typescript @types/react @types/node

Figure 1.15: Commands to add typescript into the project

How to use SCSS in Next]S

In a modern version of Next]S, you do not need to have a special configuration for
using SCSS. Just rename your CSS files to SCSS and it will be automatically built.
No matter how you created the application we highly recommend storing your style
files in a separate folder.

Please note that using the style files should have a naming convention that
requires a style name to be like this <your-style-name>.module.scss.
That is a requirement because all global styles should be declared in your
_app.ts file and connected to the application. But if you have custom styles
for your different pages, please name your styles with module after the file
name. It is a part of the framework and can’t be reconfigured

How to enable and use styled components

In the modern React world, we can reuse components that were created for different
proposals and frameworks. Using the Styled Components plugin will enable the
feature to reuse components from web React to mobile React Native and from mobile
to Next]S framework.

To enable this plugin to enter these commands in your CLI:

yarn add styled-components

npm install --save styled-components

npm install --save @types/styled-components

Figure 1.16: Command to add Styled Components into project

Warming up with Next]S

11

After that you will need to add a new configuration in your next.config.js:

const nextConfig = {
reactStrictMode:
styledComponents:
env: {
SECRET: process.env.SECRET
}

b

b

I

module.exports = nextConfig

Figure 1.17: Code in next.config.js file

Now we can use the Styled Components feature in our project as in the code below:

import type { NextPage } from 'next';
import { createGlobalStyle } from 'styled-components';

const GlobalStyle = createGlobalStyle®
body {
background-color: #ebebeb;
min-height: 100vh;
padding: 0.5rem;
margin-top: 0;
font-family: Verdana;

3

const StyledPage: NextPage = () = {
return (
<>
<GlobalStyle />
<div>This page will be styled with global
stylegs=/div>
)
i

export default StyledPage;

Figure 1.18: Code for example styled page with Styled Component inside

12 Next.js Cookbook

How to create a multipage app

As you remember the main element in the NextJS structure is a page. The page is
a React]S component file (*.jsx or in our case *.tsx) that contains the code for a
separated single page. The magic of Next]JS starts in a place where you do not need
to initialize or configure a possibility to create more than one page in the project.
Each file that will be placed in the pages folder will be automatically wrapped with
alink and could be called by URL request. So your file structure should look like this

COOKBOOK

~ pages
> api
TS about.tsx M
TS index.tsx M
> public
~ styles
¢ globals.scss

Home.module.scss

@ s
© _gitignore

rcjson

TS next-env.dts

next.config.js M

B8 tsconfigjson

& yamlock M

Figure 1.19: The project folder structure

Here you can see we have two pages in our project. Let us put some code inside
them and create a link between them:

import type { NextPage } from 'next'
import Link from 'next/link'
import styles from '../styles/Home.module.scss'

const Home: NextPage = () => {
return (

<div className={styles.container}>
<h1l>Hello there ! This is the main page of CookBook</hl>
<Link href="/about">About</Link>
</div>
)
X

export default Home

Figure 1.20: Code from home page component

Warming up with Next]S 13

And the second page with pretty similar code inside

import type { NextPage } from 'next'
import Link from 'next/link'

import styles from '../styles/About.module.scss'
const About: NextPage = () => {
return (

<div className={styles.container}>
<hl>Hello there ! This is the About page of CookBook</hl>
<Link href="/">Main</Link>
</div>
)
}

export default About

Figure 1.21: Code from second page component

Now when we run the development server, we will see the page like this:

C @ localhost

Hello there ! This is the main page of CookBook

About

Figure 1.22: Result view for the home page

And by the click on the About link we will open the page with different content like
this:

e C @ localhost:300

Hello there ! This is the About page of CookBook

Main

Figure 1.23: Result view for the second page

As we can see, both the pages are connected by the link automatically and no
configuration is required for simple routing like this.

Also, you can define sub-folders inside your pages folder. That will also create a link
to your page as well. For example, you can create pages/articles/folders and organize

14 Next.js Cookbook

its single page application there using index.tsx as a root file for the application and
any name for other pages. The routing rules will be the same without dependency
to the level of deep.

How to change pages - Routing tools

Even having such powerful tools for page creation as we mentioned before in the real-
world application examples that feature still will be not enough. Pre-defined pages
could be difficult to create and support. Also, we will need to have a big amount of
file duplicates that are also not a good example of application architecture.

To solve this issue Next]S provides a useful mechanism with predefined paths. For
example, we need to add more recipes to our CookBook application and the routes
for them will look like this pattern: https://cook.book/recipes/HealthyBreakfast. In
NextJS we use a dynamic route and it will expect the same file structure as in the
pattern. Butin our case, the last part should be dynamic so we can’t just name the file
HealthyBreakfast, so to solve it the file structure should look like this:

~ COOKBOOK

~ pages

~ recipes

TS [recipel.tsx

TS _app.isk

TS about.isx

2 £ o [

TS index.tsx

Figure 1.24: Project folder structure after file creation

Now we can create the code for a file named [recipe].tsx. The brackets in the name
are required by the framework to mark the file as the dynamic route. Please put this
code into the file:

import { useRouter } from 'next/router’
const Recipe = () => {
const router = useRouter()

const { recipe } = router.query

return <p>Recipe: {recipe}</p>

}

export default Recipe

Figure. 1.25: Code from [recipe].tsx file

Warming up with Next]S 15

Now when we reload the page in the required URL, we will see that result on our
screen:

C @ localhost

Recipe: HealthyBreakfast

Figure 1.26: Result of [recipe].tsx rendering

Nice! Now we can create any amount of recipe pages that could be ever required.
In our code, we use the hook that is called useRouter. That hook will collect whole
information about the router that we could need for our application. In the current
case, we are getting query information data. Also, if we will need to get more data
like in this example: http://localhost:3000/recipes/HealthyBreakfast?additionalDat
a=sugar-not-included ,

we can get the information that is the in additionalData variable by changing the
router query code like this:

const { recipe, additionalData } = router.query

Figure 1.27: Router query

After that, we could use this variable inside the code as it could be required.

Anyway, we can also name folders as dynamic folders if we would need them. For
example, our CookBook will start growing and we will need to group our recipes
into groups like Breakfast, Dinner, and Soups. Then the URL should be done like this
http://localhost:3000/recipes/breakfast/HealthyBreakfast. To solve it we can just
create 3 folders and put the dynamic files in each one. But The page design will be
the same so we do not need such a complicated structure the best solution will be to
create a dynamic folder structure:

~ recipes’, [recipe_type]

TS [recipe].tsx

T$ about.tsx

u
TS _app.tsx u
M
M

TS index.tsx

Figure 1.28: Project folder structure

16 Next.js Cookbook

And in the end, the code of the page will look like this to react to dynamic route
changes

import { useRouter } from 'next/router'

const Recipe = () => {
const router = useRouter()
const { recipe, recipe_type } = router.query

return <p>Recipe: in {recipe_type} is {recipe}</p>

}

export default Recipe

Figure 1.29: Code in recipe file

You can also simplify the structure if there is a possibility to not think about how
complex the parameters query is. For example, http://localhost:3000/recipes/
breakfast/sugar-free/HealthyBreakfast. And it could grow and grow and grow...
So. In this case, we can get rid of sub-folders and create the file with the name [...
recipes].tsx in a pages folder like this:

~ COOKBOOK

TS [.recipes]tsx

LU
TS about.tsx M

TS index.tsx

Figure 1.30: How to rename the file

Also, we need to make changes to the page code. The main thing is that data for the
router will come as an array so we will need to iterate it to show the information on

the page.

Warming up with Next]S 17

import { useRouter } from 'next/router’

const Recipe = () => {
const router = useRouter()
const { recipes } = router.query

return <div>Recipe: in
{recipes && recipes.map((recipe: string, index: number) => {
return <div key={index}>{recipe}</div>
}}
</div>

¥

export default Recipe

Figure 1.31: New code in recipe file

Pages that you create are wrapped with a special mechanism called Automatic
Static Optimization. This feature contains both options of rendering that are
possible for Next]S. If we use the static page option the route query will
trigger after hydration. We will look closer at rendering options in the next
chapters

How to change the router by the event?

We did a great job before and created the system that will give us an opportunity to
create a multi-page application in a short timeline. But how to change the routes by
the navigation click when we will have such big number of pages?

To do that lets create a link button in our code. That button will change the route to
another page. For example, let us loop 2 pages with the ‘next/previous’ button. To
achieve it your code should look like this one:

18 Next.js Cookbook

import { useRouter } from 'next/router’

const Recipe = () => {
const router = useRouter()
const { recipes } = router.query
let label = 'Next Recipe'
let link = '/recipes/breakfast/HealthyBreakfast'

if (recipes && recipes[2] === 'HealthyBreakfast') {
label = 'Previous Recipe'
link = '/recipes/breakfast/AnotherHealthyBreakfast'
}

return <div>
Recipe: 1in
{recipes && recipes.map((recipe: string, index: number) => {
return <div key={index}>{recipe}</div>
e
<button onClick={() => router.push(link)}>{label}</button>
</div>

export default Recipe

Figure 1.32: Updated code of recipe file

It is just an example. You can create your own expressions as you wish and generate
the router link by the requirements.

How to change the page params state
without running data fetching methods

Let us imagine that we have a page with recipes, and we have allowed our users
to leave a comment on this page. After one or more years the number of comments
became so huge that we were pushed to split all comments into pages that could get
from API at once. The other problem is if we share the page or accidentally reload
the page, we need to know the page number for the comments. If for the case where
to store local data the solution can be easily solved - with sharing its more tricky
part. Next]S routing module provides the functionality called Shallow Routing to
solve this issue easily

Warming up with Next]S 19

So, we will:
1. Catch the comment age param on page load.

2. Update the number on the event. For the simple example, it will be the
button:

import { useRouter } from 'next/router'
import { useEffect } from 'react’

const Recipe = ({initialData}) => {
const router = useRouter()
const { recipes, comment_page } = router.query
let label = 'Next Recipe'
let link = '/recipes/breakfast/HealthyBreakfast'
let default_comment_pages_value = Number(comment_page) ?? 10

if (recipes && recipes[2] === 'HealthyBreakfast') {
label = 'Previous Recipe'
link = '/recipes/breakfast/AnotherHealthyBreakfast'
}

useEffect(() => {

router.push(link+'?comment_page="'+default_comment_pages_value, , { shallow: })

0

useEffect(() => {
console.log(comment_page, initialData)
}, [comment_page, initialData])

const nextPageNumber = (page: string | string[] | f): number => {
return Number(page) + 1
}
return <div>
Recipe: in
{recipes & recipes.map((recipe: string, index: number) => {
return <div key={index}>{recipe}</div>
H}
<button onClick={() => router.push(link)}>{label}</button>
<button onClick={() => router.push(link+'?comment_page="'+nextPageNumber(comment_page), , { shallow:
})}>Change comment page</button>
</div>
]
Recipe.getInitialProps = () => {
const initialData = 'data on load: '+Math.random()
return { initialData }

¥

export default Recipe

Figure 1.33: Final version of recipe file

As a result, we could change the variable parameter but the page init mechanism
will fire only once because of the shallow parameter activated.

11 data on load: ©.9037369174468142585
12 data on load: 8.0837369174468142585
13 data on load: 8. 369174468142585
14 data on load: 8.0837369174468142585
on load: 8.8837369174468142585
on load: ©.9837369174468142585
on load: 8.0837369174468142585

18 data on load: 9.0037369174468142585

Figure 1.34: Console view after changes of recipe file

20 Next.js Cookbook

As you can see the router param is changing but the initial data stays the same. That
means that no fetching methods will be activated using shallow routing.

Conclusion

Still remembering the time when solving such problems could take several days.
It was necessary to create the logic for changing the routing, process each request,
receive data, create logic for the initial receipt of data, and so on. Next]S allows you
to reduce the development time in solving such problems to several minutes. Thus,
it is now possible to create a simple blog, provided that the serverless CMS is used.
In the next chapters we will look at how to work with such data, but for now we will
not go into this.

One should keep in mind that skill comes with practice. In this chapter, we looked
at how to quickly deploy a project and create a simple application with a few pages.
Practice. Create more pages and logic. Use React]S knowledge to create software.
The design rules are the same.

In the next chapter we will start architect the application in modern way using
design patterns and Test Driven development

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com
El

e
Elu

J

CHAPTER 2
Using design
patterns in Next]S

If everybody minded their own business, the world would go around
a great deal faster than it does.

— Lewis Carroll

Introduction

In every business when we use, Next]JS any part should take responsibility for its
own scope, to not invent the wheel each time we can use good old programming
patterns that will be able to solve a daily problem faster as keeping the codebase
scalable and maintainable condition. The problems could be as short and solvable in
many ways as complex and require more architectural decisions.

Speaking about the tools that we will use in this chapter - we are going to use
design patterns in the app-building process. As you know there are several rules
and requirements in the application-creating process and in the code quality
requirements also.

In this book, we will use only three of them just to keep in the topic on NextJS but you
can check and use other patterns in real life. The name of the patterns is Singleton,
Builder, and Strategy. These patterns are mostly used in any scale of application
from the beginners’ small to really big and scaled applications.

22 Next.js Cookbook

Structure

e How to optimize your SPA and Router with patterns?
o Writing Singleton pattern for data objects
0 Writing Builder pattern to operate the data
o Writing strategy pattern for page-changing intent
e Using Test-Driven Development for safety and management
o How to configure the TDD environment?
o Writing your first component in a test-first way

e Conclusion

Objectives

In this chapter, we will learn how to optimize our core with simple design patterns
that will give us the possibility to easily scale and refactor the application in any
project timeline. Also in the second part of the chapter, we will introduce the
TDD way of developing the Next]S application to make our code more safe and
manageable for the project team members.

Optimizing your SPA and router with
patterns

Let us deep down into a rabbit hole to figure out what problems in SPA and by
routing we can solve using design patterns and if it is a real problem at all.

In the real world, the application can contain logic that is used in more than one
place, and this logic can also be complex algorithms that require to use of more than
one function or class. For such cases application development introduces the design
patterns. The most advantage of using design patterns is that you do not need to
invent a logic or algorithm but use the most well-known scheme. It will give less
complexity to test and debug applications.

Writing Singleton pattern for data objects

To understand what is Singleton let's imagine that to create the application we
would require to get a new laptop each time we want to create a new file. Sounds
complicated and also we will have too many laptops that are used for the same
task. As the result, we will overflow our working space with laptops. The same will

Using design patterns in Next]S 23

happen with the data objects if we will create a new instance each time we want to
work with the data that already exists.

In a big scaled app, we will need to use classes and objects that will be created in
several places of our code. That could create overuse of memory for the browser.
Of course, we live in a world with super powerful processors and do not have
an efficient memory but, that does not mean that we can spend it all the time. In
JavaScript, we, have to understand that resources using not only for calculating and
working with the data but also for the UI and animation. To make your application
work smooth and predictable we always need to think about optimization.

For such cases, we can use a Singleton pattern that will help us to solve several
problems. First of all, we can be sure that a class is created only once that will save
our resources. On the other hand, we can control the global access to the instance
and use it to share the data between other instances.

The limitation of using this pattern can be that it is solving more than one problem
as a class so it will violate the single responsibility principle.

This is a good practice to use in data fetching as we can solve many problems with
data sharing and caching data only with only wrapping our logic with this pattern.

The Objective Oriented world will appear like Figure 2.1:

(1]

If (instance === null) {
instance = new
Singleton()

}

Return instance

Singleton

instance: Singleton

Call to Singleton

+getinstace()

)

Figure 2.1: Singleton schematic object view

Where will we use this pattern in our application? We will use it only for data that
we will share between components.

Let us try to create one object as a Singleton. To do it we will create the folder named
“core” in the folder “. /pages” to have not even shared elements between components
but have it shared even with APIL Then create a file named “data_service.ts”.
That will be our first shared object that will contain some information inside.

24 Next.js Cookbook

Take a look at the Figure 2.2 with a code example. That code we will add to the file
that we just created.

class ArticleDataService {
private static instance: ArticleDataService;
private constructor() { }

public static getInstance(): ArticleDataService {
if (!ArticleDataService.instance) {
ArticleDataService.instance = new ArticleDataService();

b

return ArticleDataService.instance;

Figure 2.2: Singleton class instance

The logic of the code is pretty simple. We are creating an instance of the class on
creating only in case it is not created. In case it is already created we will use the
current instance.

Please note! There is no silver bullet in using patterns as Singleton. Be
careful in choosing. I recommend using it only for the data modeling for the
application

Now we can do some architecture to figure out what data structure we will have to
share data between components.

As we are playing around with the blogging system let us use some data for the
articles so we need to collect the data about the page into properties of the class. In
the real-world app, we can use as many such services as we want. We will start from
one in our basic example here.
For the article, we will require several fields to have:

o Title: String

e Author: String

¢ Content: String

e Category: Object

¢ Image: String (it will be an URL)

e Creation date: Date

Using design patterns in Next]S 25

e Allow comments flag: Boolean

e Status: Enum

The code of the class for these requirements will look like the following figure:

interface ICategory {
title: string
url: string

}

interface IArticle {
id: number
title: string
author: string
content: string
category: ICategory
image: string
createdAt: string
allowComments: boolean
status: 'public' | 'draft’
}

class ArticleDataService {
private static instance: ArticleDataService;
private constructor() { }
private currentArticle: IArticle

public static getInstance(): ArticleDataService {
i aService.instance) {
rvice.instance = new ArticleDate

leDataService.instance;

F

getArcticle(id: number) {

Figure 2.3: Article Data class using interfaces and Singleton pattern

Now we can re-use and call the data of the article from any place in our code and it
will be shared between the modules. How it will help us if technically we can just
send all data as props into all components on the page? So, for this exact example,
we do not need the data to be props as we do not plan to mutate the data while
rendering and using the page. It will be rendered once and never changed until the
whole page is reloaded. Also, we will not need to change the props of the component

26 Next.js Cookbook

in case if the data structure is changed so we will be double-safe in this case. That
does not mean that we will get rid of using props in our architecture. It is just a
possibility to use data in different places.

As we will use the API functionality of Next]S in future chapters here we will just
create some mock data to use in the app. Please create some JSON files in the folder
“mocks” in the “pages” folder.

The file with mock data will contain this data as shown in Figure 2.4:

Sid]

“title": “"Breakfast burger",

"author": "John Wik",

"content": "Some content for the blog",
"category": {

"title": "Breakfast food",
"url": "/categories/breakfast"
}’
"image": "shorturl.at/hlulO",
"createdAt": "2022-05-01",
"allowComments": -
"status": "public"

Figure 2.4: The mock-data JSON that will be used in the app

For the test, you can create more than one element in the array of data. To get the
data we will create the index. ts file in the “pages/mocks” folder.

This file will contain a function that will imitate API calls and return the data as the
following figure:

000
import articles from "./articles.json"
const getMock = {

articles

)

export { getMock }

Figure 2.5: Aggregator object for the mock data

Using design patterns in Next]S 27

After that, we can implement this function into our Singleton class to get the data
ones it is required.

Let us do some updates in the service class to implement mock data receive:
(Figure 2.6):

class ArticleDataService {
private static instance: ArticleDataService;
private constructor() { }
private articles: {[key:string]: IArticle} = {}
private navigation: Array<string> = []

public static getInstance(): ArticleDataService {
if (!ArticleDataService.instance) {
console.log('ArticleDataService new instance')
ArticleDataService.instance = new ArticleDataService();
b
return ArticleDataService.instance;

X

getNavigation() {
if (Array.isArray(this.navigation) && this.navigation.length === 0) {
this.navigation = getMock.articles.map(atricle => atricle.id)

}
return this.navigation

}

getArcticle(id: string) {
if (!this.articles[id]) {
this.articles[1d] = getMock.articles.find((article) => article.id === id) as
IArticle}
return this.articles[id]

}

Figure 2.6: Updated service with managing data methods

Leaving the console. log statement to show you how it will work. The log statement
will trigger only once even if you will do actions on the page and change the router
state. The reload of the class will happen only if we do a hard page reload.

As you probably can imagine - this way of service use might be used instead
of using Redux or any state management system. But please do not confuse
patterns. Redux is a specific implementation of the Flux pattern that provides
a more streamlined and efficient way of managing the application state. So
using Redux we can subscribe and know when the state was changed and
what was before the changes. Singleton is a good thing only in case we need
to share data or cache the data.

28 Next.js Cookbook

The data is loaded and we will need to operate with this data somehow. For these
requirements, we can use another pattern called Builder.

Writing builder pattern to operate the data

Now when we have a singleton for data we can proceed with page creation. In
simple examples, there is no issue with just getting the data and then putting it into
the template. Let us scale the example from a basic “Hello-world” application to
something more specific and enterprise.

In this case, we will need to operate this data into something special before we do
render. In this case, we can use another pattern called Builder.

For example, we do a Food blog that contains recipes for baking Burgers. There are
hundreds of different burgers but the steps of creation are quite same. We will take
a basic example that will contain only a few of them as it could be very complex in
the end. Let us take an example where exists only these steps:

1. Baking top buns part with seeds.
Baking top buns part without seeds.
Baking meat.

Baking fish.

Baking chicken.

Prepare burger sauce.

Prepare fish sauce.

Prepare special sauce.

O ® N DN

Baking bottom buns part.
10. Grill burger with cheese.

Most of our burgers will have these steps to produce a burger. But not all the burgers
will have all the steps.

Using design patterns in Next]S 29

4>[Baking top buns with seeds]

Baking meat]

Grill burger with cheese

A \ {

Prepare burger source

Baking bottom buns

Figure 2.7: Schematics for the burger producing steps

In Figure 2.7 we can see an example of what the building process will look like for
some simple burgers with meat. We will use only half of the possible steps to build
some products.

This is a real-world example of how the Builder pattern is working. Now we can use
this knowledge in the programming language world.

Let us try to write some code for this pattern. For typescript it will look like this:

interface IBuilder {
backingTopBunsPartWithSeeds(): void;
backingTopBunsPartWithoutSeeds(): void;
backingMeat(): void;
backingFish(): void;

backingChicken(): void;
prepareBurgerSouce(): void;
prepareFishSouce(): void;
prepareSpecialSouce(): void;
backingBottomBunsPart(): void;
grillBurgerWithCheese(): void;

Figure 2.8: Builder interface for the implementation

30 Next.js Cookbook

The convention of using an “I” prefix for interfaces was popularized by
Microsoft in their NET framework, where it is a widely used convention for
naming interfaces. This convention has since been adopted by many other
programming communities, including the TypeScript community

This interface will be a main part of the builder class as it contains all methods that
will be used in data creation.

Now having such an interface, we can create the builder class that will appear like
Figure 2.9:

class BurgerBuilder implements IBuilder {

backingTopBunsPartWithSeeds(): void {
console.log('Top bun with seeds is builded')

b

backingTopBunsPartWithoutSeeds(): void {
console. log('Top bun without seeds is builded')

I

backingMeat(): void {
console.log('Meat is builded')

b
backingFish(): void {
console. log('Fish is builded')

}

backingChicken(): void {
console. log('Chicken is builded')

}

prepareBurgerSouce(): void {
console. log('Burger souce is builded')

ireFishSouce(): void {
console.log('Fish souce is builded')

}

prepareSpecialSouce(): void {
console. log('Special souce is builded')

b

backingBottomBunsPart(): void {
console. log('Bottom bun is builded"')

}

grillBurgerWithCheese(): void {
console.log('Grill with cheese is builded')

I

Figure 2.9 Builder class realization using builder interface

Using design patterns in Next]S 31

After that, we will need a director class that can contain all options on our burger
menu. Note that the Director class is not necessary to exist but it will be more simple
to call one class that contains the menu of the burgers for our example. This class
will look like this:

L XN
import { IBuilder } from "./burger-builder";

class BurgerDirector {
private builder!: IBuilder

constructor(builder: IBuilder) {
this.setBuilder(builder);
}

public setBuilder(builder: IBuilder): void {
this.builder = builder
}

public buildHamburger(): void{
this.builder.backingTopBunsPartWithSeeds()
this.builder.backingMeat()
this.builder.grillBurgerWithCheese()
this.builder.prepareBurgerSouce()
this.builder.backingBottomBunsPart()

)

export { BurgerDirector }

Figure 2.10: Builder director class to orchestrate builder

To activate the building we need to add the creation of a builder and director to our
component with the following code:

const burgerBuilder = new BurgerBuilder()
const burgerDirector = new
BurgerDirector(burgerBuilder)

Figure 2.11: Activation of building using all instances that we created

We can place this code in any part of the code but we highly recommend doing it in
the components part before the rendering part. After that in the place where we get
the data we can use the builder like Figure 2.12:

32 Next.js Cookbook

(X N
useEffect(() => {
if (pid) {
setContent({...ArticleDataService.getInstance().getArticle(recipes[1])}
) burgerDirector.buildHamburger();
}

}, [recipes, burgerDirector])

Figure 2.12: Build hamburger on page load using useEffect hook
Now we can see that the burger is perfectly built if we open the console as illustrated
in Figure 2.13:

Top bun with seeds is builded burger-builder.ts?13c6:16
Meat is builded burger—builder.ts?13c6:22

Grill with cheese is builded burger-builder.ts?13¢6:43
Burger souce is builded burger-builder.ts?13c6:31
Bottom bun is builded burger-builder.ts?13c6:490

Figure 2.13: Console log result after page load

You can use any options to build the burger but this is how it works for any case that
we will use in this book.

This is an abstract example. But to use it in the real-world application we can use the
previous experience of the Singleton pattern and add some data inside.

To achieve it we will need to add some code to our project. The defined steps of what
we will do will look like this:

1. We will require some mock data that will be created as we did it before for
the articles.

We will need a singleton service class to operate with the data.

We will define a recipe as a product and make the builder return the product
as a result of the build process.

We will define steps as an enum.
We will define logic regarding enums.

The complete code after these requirements will look like this. The mock data as
depicted in Figure 2.14 :

Using design patterns in Next]S

33

"backingTopBunsPartWithSeeds": "We are baking the top bun with seeds",

"backingTopBunsPartWithoutSeeds": "We are baking the top bun without seeds",
"backingMeat": "We are backing the meat",
"backingFish": "We are backing the fish",

"backingChicken": "We are backing the chicken",
"prepareBurgerSouce": "We are preparing the burger souce",
"prepareFishSouce": "We are preparing the fish souce",
"prepareSpecialSouce"”: "We are preparing the special souce",
"backingBottomBunsPart": "We are backing the bottom bun",
"grillBurgerWithCheese": "We are grill burger wth cheese"

Figure 2.14: Mock-date for the builder

After that, we will create the file “burger-config.ts” that will contain an enum
with the required keys for this data. That enum will help us to define all names that
we will use in the builder as each key will contain the data key and the name of
the method that will be used to call for this data. Having this enum we will define
the connection between data and code, and we will also solve the future issue with

naming convection of methods names.

Check the next Figure 2.15 to find out what the code will look like:

enum BurgerSteps {
TOP_BUNS_WITH_SEEDS = "backingTopBunsPartWithSeeds",

TOP_BUNS_WITHOUT_SEEDS = "backingTopBunsPartWithoutSeeds",

MEAT = "backingMeat",

FISH = "backingFish",

CHICKEN = "backingChicken",

BURGER_SOUCE = "prepareBurgerSouce",

FISH_SOUCE = "prepareFishSouce",

SPECIAL_SOUCE = "prepareSpecialSouce",

BOTTOM_BUNS = "backingBottomBunsPart",

GRILL_BURGER_WITH_CHEESE = "grillBurgerWithCheese"
}

export { BurgerSteps }

Figure 2.15: Enum for the Builder

34 Next.js Cookbook

The data service will require a bit more logic rather than just getting the data and
providing the data. As we are making the system that will be ready for real-world
API calls we will have the method to get each step of the recipe by the key. We will
cache this data inside the singleton to reuse it in the next creation of the burger. To
complete this issue we will need this class like in the following figure:

import { getMock } from "../mocks"
import { BurgerSteps } from "./burger-config";

class BurgerDataService {
private static instance: BurgerDataService;
private steps!: {key: BurgerSteps, value: string}[]
private constructor() {
this.steps = []
}

public static getInstance(): BurgerDataService {
if (!BurgerDataService.instance) {
console.log('BurgerDataService new instance')
BurgerDataService.instance = new BurgerDataService();
}
return BurgerDataService.instance;

}

getStep(key: BurgerSteps) {
let currentStep = this.steps.find((step: {key: BurgerSteps, value: string}) => step.key === key
if (!currentStep) {
currentStep = {
key,
value: getMock.baking[key]
3
this.steps.push(currentStep)
}

return currentStep

}

export { BurgerDataService }

Figure 2.16: Service to manage burger data

As you can see, we have the “getStep” method to get the step by the key name
that we described before in the BurgerSteps enum and for each method call, we
will collect the steps array, which will be reused if we will need it, instead of the
API call. Why do need to optimize this at all? Why just not have a call each time we
need the information? The answer is simple - Money. In the modern architectures
that are used for the deployment of the applications the cloud solutions mostly cost

Using design patterns in Next]S 35

per amount of calls that we are making during application use. In this case, if we
will have fewer bills at the end of the month. Also we will increase the speed of
the application as we do not need to wait for the server to get the information that
already exists in the application

Finally, we will do some changes in the builder and director classes to fit the new
requirements regarding having the enum in the code: (Figure 2.17)

interface IBuilder {
[BurgerSteps.TOP_BUNS_WITH_SEEDS]: () => void
[BurgerSteps.TOP_BUNS_WITHOUT_SEEDS]: () => void
[BurgerSteps.MEAT]: () => void
[BurgerSteps.FISH]: () => void
[BurgerSteps.CHICKEN]: () => void

[BurgerSteps.BURGER_SOUCE]: () => void
[BurgerSteps.FISH_SOUCE]: () => void
[BurgerSteps.SPECIAL_SOUCE]: () => void
[BurgerSteps.BOTTOM_BUNS]: () => void
[BurgerSteps.GRILL_BURGER_WITH_CHEESE]: () => void
getRecipe(): Array<string>

resetBuilder(): void

Figure 2.17: Builder interface

As you see we can use the enum element name as a name for any method or property.

Using this possibility, we can rename and rewrite all required methods for the
interface using the new enum element.

We will add two more methods that will add logic that will allow us to return the
recipe as a product and reset the builder to have the ability to start other another
burger in our process lanes as shown in Figure 2.18:

36 Next.js Cookbook

class BurgerBuilder implements
private recipe: <s
e(): < > {
const ste = this.
this.
return

.TOP_BUNS_WITH_SEEDS](): void {
(Bu TOP_BUNS_WIT DS)

.log('Top bun with seeds is builded')

.TOP_BUNS_WITHOUT_SEEDS](): void {
(< S S)

ble.log('Top bun without seeds is builded')
.MEAT](): void {

.setStep(BurgerSteps .MEAT)
.log('Meat is builded')

Steps.FISH](): void {
set (B 50)
.log('Fish is builded')

LCHICKEN](): void {
(.CHICKEN)
e.log('Chicken is builded')

.BURGER_SOUCE](): void {
eStep(~ BURGER_SOUCE)
.log('Burger souce is builded')

.FISH_SOUCE](): void {

C (, H

.Log(’Ftsh souce is builded')

.SPECIAL_SOUCE](): void {
.setStep(BurgerSteps.SP)

.log('Special souce is builded')

Steps.BOTTOM_BUNS](): void {
etStep(Steps.BOT IS)
.log('Bottom bun is builded')

.GRILL_BURGER_WITH_CHEESE](): void {
(Burger ‘ ER_WITH_CHEESE)

.log('Grill with cheese is builded')

Figure 2.18: Builder realization using the interface

Using design patterns in Next]S

37

Also, we need to add some refactoring to director-class as shown in Figure 2.19:

class BurgerDirector {
private builder!: IBuilder

public setBuilder(builder: void {

this.builder = builder

IBuilder):
}

public buildHamburger(): void{
this.builder[BurgerSteps.TOP_BUNS_WITH_SEEDS]()

this
this
this
this

.builder[BurgerSteps
.builder[BurgerSteps
.builder[BurgerSteps
.builder[BurgerSteps

.MEAT]()
.GRILL_BURGER_WITH_CHEESE]()
.BURGER_SOUCE]()
.BOTTOM_BUNS]()

Figure 2.19: Builder director to orchestrate builder

Finally, we have the whole burger building process in the code and we can build any
burger recipe for an article in our food blog. We can add, change or remove steps as
many times as we want and it will not take a lot of refactoring as even the names of

the methods are centralized in the enum.

Figure 2.20 explained the call of the builder to build a burger. Add a console.log

function to check what is in the product now:

1t({...ArticleDataService.getInstance().getArticle(recipes[1])}

) rDirector.buildHamburger();
console.log("getting the recipe", burgerBuilder.getRecipe());
}
}, [recipes, burgerDirector]);

Figure 2.20 Initiate the builder on page load using the useEffect hook

38 Next.js Cookbook

The result in the console will look like this: (Figure 2.21)

ArticleDataService new articles—data.service.ts?e99b:
instance

BurgerDataService new instance burger—-data.service.ts?3393:

Top bun with seeds is builded burger-builder.ts?13c6:38
Meat is builded burger-builder.ts?13c6:46
Grill with cheese is builded burger-builder.ts?13c6:74
Burger souce is builded burger-builder.ts?13c6:58
Bottom bun is builded burger—-builder.ts?13c6:70

getting the recipe ...recipes].tsx?af51:21
(5) ['We are baking the top bun with seeds', 'We are backing t
v he meat', 'We are grill burger wth cheese', 'We are preparing
the burger souce', 'We are backing the bottom bun']
0: "We are baking the top bun with seeds"
1: "We are backing the meat"
2: "We are grill burger wth cheese"
3: "We are preparing the burger souce"
4: "We are backing the bottom bun"

. 5

» [[Prototype]]: Array(0)

Figure 2.21: Console log result after the page load

The burger is done and we can move to the next pattern that called Strategy.

Writing Strategy pattern for page changing
intent

Speaking about burgers - there are several of them and each one will require its
personal way of backing. In the other words, we will use different strategies to bake
different burgers. This issue is possible to solve using a regular “if” expression, but
it will be more beautiful to use a Strategy pattern here.

The pattern basis is that we can take similar algorithms and group them into their
scoped classes and then switch these classes while the application is working.
Having this feature we can change the recipe in real-time having different strategy
classes that are highly independent of one another.

For the current example we will make it work using the following steps:

1. We will create Strategy classes to use them as the action object instead of
expressions.

2. We will use a naming convention with an Enum that will contain the possible
method names inside.

3. We will create the class with business logic where we will create the method
that will initiate chosen strategy class as a parameter.

Using design patterns in Next]S 39

The working scheme of the pattern is described in the Figure 2.22:

Is N

IStrategy

i -
Kitchen +buildMeAburger(builder, director)

L

, I Z
- L S Y

MakeHamburger MakeChickenburger

L J L

Figure 2.22: Strategy object schematics

We have enough theory here so we can start coding after having all requirements.

In the first place we will need the burger type in our article mock data and add the
burger type parameter inside like this: (Figure 2.23):

000
{
"id": "breakfast_burger",
“title": "Breakfast burger",
"author": "John Wik",
"burger": "hamburger",
L cohiteniit : -t T i
"category": {
"title": "Breakfast food",
"url": "/categories/breakfast"
}’
"image": "shorturl.at/hluI0",
"createdAt": "2022-05-01",
"allowComments": s
"status": "public"
}’

Figure 2.23 Updated mock data with burger type

Then we will add some more configurations for the burgers. We will need enums to
store the strategies for baking like this:

enum StrategiesNames {
HAMBURGER = "hamburger",
CHICKENBURGER = "chickenburger"
)

const Strategies = {

[StrategiesNames.HAMBURGER]: new MakeHamburger(),
[StrategiesNames.CHICKENBURGER]: new MakeChickenburger()

Figure 2.24: Namespace for the strategies

40 Next.js Cookbook

Now we have 2 baking strategies that will help us to make a Strategy pattern logic.
Then having this we can create the interface and strategies classes: (Figure 2.25)

nterface IStrategy {
bakeMeAburger(burgerBuilder: BurgerB

}

class MakeHamburger implements IStrategy {
public bakeMeAburger(burgerBuilder: BurgerBuilde burgerDirector: BurgerDirector): string[] {
burgerDirector.buildHamburger()
return burgerBuilder.getRecipe()

}

class MakeChickenburger implements IS
public bakeMeAburger(burgerButlder jerBuilder, burgerDirector: BurgerDirector): string[] {
yurgerDirector.buildChickenburger()

return burc Lu,t er.getRecipe()

Figure 2.25: Strategy classes that will be used in the application

Now we can finally create the Kitchen class that will contain the logic of baking
different burgers depending on what strategy has been chosen as shown in Figure
2.26:

class Kitchen {
private strategy: I

1structor(:s ategy: IStr:) {

console. log('Strategy class NSETRS
this. Strategy strategy

olic setStrategy(strategy: I

console. log(" strategy , strate
this.strategy = strateg

blic bakeSomething(burgerBuild
console. ¢ (Now Kitchen is on ftre)
const result = this.strategy.bakeMeAburger(burgerB
nsole.log('We baked:', result)

Figure 2.26: Context class with business logic for the application

To make these updates work in the page component we will need also to update the
code there to have the following code inside:

Using design patterns in Next]S

41

import { useRouter } from 'next/router’

import { useEffect, useMemo, useState } from 'react’

import { ArticleDataService, IArticle } from '../core/articles-data.service'
import styles from '../../styles/Recipes.module.scss’

import { BurgerDirector } from '../core/burger-director'

import { BurgerBuilder } from '../core/burger-builder’

import { IStrategy, Kitchen } from '../core/burger-strategy’

import { Strategies, StrategiesNames } from '../core/burger-config'

const Recipe = ({ initialData }: Partial<any>) => {
const router = useRouter()
const [content, setContent] = useState<IArticle>({} as IArticle);
const { pid } = router.query
const links = ArticleDataService.getInstance().getNavigation()
const burgerBuilder = new BurgerBuilder()
const burgerDirector = new BurgerDirector()
burgerDirector.setBuilder(burgerBuilder)

let burgerType = null
let context: Kitchen
let currentBurgerType: StrategiesNames
const changeBurgerType = () => {
console.log("current burger type", currentBurgerType)
// Next line of code having no sence. We l just switch strategies to show the example is works
const newStrategy = currentBurgerType === StrategiesNames.HAMBURGER ? StrategiesNames.CHICKENBURGER :
StrategiesNames.HAMBURGER
currentBurgerType = newStrategy
context.setStrategy(Strategies[currentBurgerTypel)
context.bakeSomething(burgerBuilder, burgerDirector)

}

useEffect(() => {
if (pid) {
setContent({...ArticleDataService.getInstance().getArticle(pid as string) })

}
}, [pid])

useMemo(() => {
if(Object.keys(content).length > 0) {
console.log("content.burger", content.burger)
// we do not use this variables as state of the component as we do not need to see
// changes of them in the template. Only the content variable will matters in this example
burgerType = Strategies[content.burger as StrategiesNames]
context = new Kitchen(burgerType)
context.bakeSomething(burgerBuilder, burgerDirector)

}, [content])

Figure 2.27: Initiation of strategies on page load

Now on each reload we will bake a burger depending on what data will come from
the article. We will have a possibility to change the strategy while using this page

using the function “changeBurgerType”.

Starting this code will show us the same result as we had before but on calling the

change burger type function it should look like this:

42 Next.js Cookbook

ArticleDataService new articles—data.service.ts?e99b:29
instance

content.burger hamburger ..arecipes].tsx?af51:39
Strategy class is » MakeHamburger {} burger—strategy.ts?fb83:

Now Kitchen is on fire burger-strategy.ts?fb83:
BurgerDataService new instance burger—data.service.ts?3393
Top bun with seeds is builded burger-builder.ts?13

Meat is builded burger—builder.ts?13c6:
Grill with cheese is builded burger—builder.ts?13c6:
Burger souce is builded burger-builder.ts?13c6:
Bottom bun is builded burger-builder.ts?13c6:

We baked: burger-strategy.ts?fb83:39
(5) ['We are baking the top bun with seeds', 'We are backing t

» he meat', 'We are grill burger wth cheese', 'We are preparing
the burger souce', 'We are backing the bottom bun']

current burger type ...recipes].tsx?af51:23
strategy » MakeHamburger {} burger-strategy.ts?fb83:32
Now Kitchen is on fire burger-strategy.ts?fb83:
Top bun with seeds is builded burger—builde 713c6:
Meat is builded burger-builder.ts?13c6:
Grill with cheese is builded burger-builder.ts?13c6:
Burger souce is builded burger—builder.ts?13c6:
Bottom bun is builded burger—builder.ts?13c6:

We baked: burger-strategy.ts?fb83:39
(5) ['We are baking the top bun with seeds', 'We are backing t

» he meat', 'We are grill burger wth cheese', 'We are preparing
the burger souce', 'We are backing the bottom bun']

Figure 2.28: Console log result after page reload

As we see here we baked two different burgers while using one page.

I know that right now it looks like over-coding the simple issue. But please
note that using patterns as using complex frameworks is not a good idea for
the basic tasks. You should understand that your application is expected to
be complex and scalable to use such a way of programming applications

Using test-driven development for safety
and management

In the software development world, we cannot fully trust anybody, especially the
code. The code can contain errors, bugs, and wrong logic. We can continuously check
the application manually using requirements but as far as the application will grow
we will lose control of the application quality. To avoid such situations, we should
use the Test-Driven Development process (we will call it TDD to make it more short
and precise). TDD is the way of creating applications that are based on short cycles
of the development flow. In this process, we will not code the application but we will
code the tests first before we create any code at all. That will mean that when the
development is started, we will use requirements to create the tests and then create
the code that will be created to pass these tests.

Using design patterns in Next]S 43

Generally, there is not always possible to create a maximal amount of tests before we
made any application because in Agile (which is used in most application projects)
we do not have strict requirements at the start. But the good news is that we do
not need to write a big amount of tests. Any amount will be enough to follow this
beautiful but not easy methodology of application creation.

Configuring the TDD environment

In this book, we will use several tools to create tests and make the application more
development-safe. For the unit tests, we will need Jest and test library from React
(as we use the react inside) and Playwright for the End-to-end tests. Having this our
CI/CD will be in a safe place.

What is Jest? Jest is a Javascript testing library that will allow us to create unit tests
that will be required before the application is rendered. In simple words, the library
will help us to check the code safety before it will be rendered to production like this:

e The library will wrap the function with a call.

e The library will get the result of the function isolated from the application.

o The library will assert the result using expectations as a result of the job.
The next library that is required is React Testing library. This one is not necessary in

the real world as we will use E2E tests. But, having a DOM test before rendering and
having snapshots for each component will also add more safety to your application.

To add these libraries to your project type this in your console: (Figure 2.29)

npm install --save-dev jest babel-jest @testing-library/react @testing-library/jest-dom identity-obj-proxy react-
test-renderer

Figure 2.29: Command to install required packages

Use the flag “--legacy-peer-deps” for the command if you will see an error about
the wrong version of the react.

Now we can configure Jest in our project. Add “jest.config.js” in the project root
with this configuration as shown in Figure 2.30:

44 Next.js Cookbook

module.exports = {
collectCoverageFrom: [
'xk/*x {js,jsx,ts,tsx}"',
Slxk/x.d.ts",
'1x%/node_modules/**",
1,

moduleNameMapper: {

5

.+\\.module\\.(css|sass|scss)$': 'identity-obj-proxy',

.#+\\.(css|sass|scss)$': '<rootDir>/__mocks__/styleMock.js',

>

>

"~.+\\.(jpg|ipeg|png|gif|webp|avif|svg)$':
‘<rootDir>/__mocks__/fileMock.js"',

b

testPathIgnorePatterns: ['<rootDir>/node_modules/', '<rootDir>/.next/'l],

testEnvironment: 'jsdom',

transform: {

AU\ (s |jsx|ts|tsx)$': ['babel-jest', { presets: ['next/babel'] }]
b
transformIgnorePatterns: [

'/node_modules/"',

'~.+\\.module\\.(css|sass|scss)$',

1,

Figure 2.30: Configuration file to setup Jest

Let us do some describing of what we created in the configuration:

e collectCoverageFrom is a filename pattern that will be used to reach out to
the test files

e moduleNameMapper is a mapper for the style files with import inside

e testPathIgnorePatterns is a path pattern that will be ignored for test
coverage

e testEnvironment is a rule for how we will test components. We use jsdom so
do not forget to install it separately by typing “yarn add jest-environment-
jsdom”

e transformis using a transpiler before we do coverage

e transformIgnorePatterns patterns to ignore for transpiler

If you face the problem with the text “Cannot find module ‘react-dom/
client’” just downgrade the test library in package.json like this “@testing-
library /react”: “12.1.5”

Using design patterns in Next]S 45

Now we can start creating our first test. To do it create the file index.test.jsx in
__tests__ folder. In this file we will code the test like this:

import React from 'react'’
import { render, screen } from '@testing-library/react’
import Home from '../pages/index.page'

lescribe('Home', () => {
it('renders a heading', () => {
render(<

een.getByRole('heading', {
e ! This is the main page of CookBook/ti,

expect(heading).toBeInTheDocument()
1)
})

Figure 2.31: Code for testing. We check that text is in component

This basic test is rendering the home page and checking that it is having the heading
element with text that is provided in the name section. Now we can run a test by
typing “yarn test”. The result will look like this:

yarn run v1.22.18

index.test.jsx
Home

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: @ total

Time: 0.427 s, estimated 1 s

‘t Done in 0.77s.

Figure 2.32: Console log result after test start

For now, you can just play around with Jest as we will proceed with the configuration
of the test environment.

To init playwright in your project do this in your console in the root directory as
shown in Figure 2.33:

Figure 2.33: Playwright installation command

46 Next.js Cookbook

This will init the library in your root project and you will see this message in your
console as shown in Figure 2.34:

Need to install the following packages:

create-playwright
0k to proceed? (y) |}

Figure 2.34: Installation process for Playwright package

"oy

Proceed with typing “y” in the console. When it asks you “Where to put your end-
to-end tests? “ type “e2e” to put your tests in the folder with this name. The library
will create the example file with the most popular examples in this folder. You can
play around to figure out how it works.

Now we have two test systems in the project and we need to avoid conflicts between
them. To do it change your test ignore patterns in Jest configuration to the following
figure:

rns: ['<rootDir>/node_modules/', '<rootDir>/.next/', '<rootDir>/e2e/']

Figure 2.35: Configuration changes, required to proceed with test packages

We can create the new task in package.json that will cover Jest and E2E tests. Add
this into your package file as shown in Figure 2.36:

“test:all": "yarn test --coverage && yarn playwright test"

Figure 2.36: Task that should be added to package.json file

After that in your console, you will see the full report of our tests like the following
Figure 2.37:

Using design patterns in Next]S 47

yarn run v1.22.18

index.test.jsx

| | % Lines | Uncovered Line #s

index.page.tsx

Figure 2.37: Coverage result after task run using npm or yarn

This report contains full information about coverage and e2e results. Coverage - is
the information about how many tests exist for each file and function is exist in your
system using the percentage system for measuring. (Figure 2.38):

48 Next.js Cookbook

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 5.241 s

Running 75 tests using 8 workers

To open last HTML report run:

‘+ Done in 20.15s.

Figure 2.38: lest report with all passed tests

Writing your first component in a test-first way

To start developing we will require to create the test file in “__tests__” folder. We
will agree that next page that we will create will be the list of recipes. So the code in
our new file will look like this as shown in Figure 2.39:

import React from 'react'’
import { render, screen } from '@testing-library/react'
import Recipelist from '../pages/recipe-list.page'

describe('RecipelList', ()
it('renders a heading', () => {

render (<RecipelList />)

ading = sc

me: /Recipe list/1,

expect(heading).toBeInTheDocument()
1)
})

Figure 2.39: Test code to check text in the component

Here we are created the test that expects page to be rendered with heading that
contain text “Recipe 1list”. Start the test with “yarn test” command in your
console. The result will look like this:

Using design patterns in Next]S 49

index.test.jsx
recipe.test.jsx
® Test suite failed to run

Cannot find module '../pages/recipe-list.page' from '__tests__/recipe.test.jsx'

1| React

{ render, screen }
RecipelList

zli
| describe(=
it(, () = A

node_modules/jest-resolve/build/resolver.js

Test Suites: , 1 passed, 2 total
Tests: 1 passed, 1 total
Snapshots: @ total

Time: 0.989 s, estimated 1 s

Figure 2.40: The failing result of the test that we created

The test is failing as we do not have such page component yet. So next steps to
follow this development way is to create the component that will fit requirements
inside. For example, we will create the page component like the following figure:

NextPage } from 'next'
"next/link

() =={

< Hello there

BAdke#hl>

export default RecipelList

Figure 2.41: Component that was expected in the test

And now if you start the test again the test will fail with another message as shown
in Figure 2.42:

50 Next.js Cookbook

index.test.jsx
recipe.test.jsx

TestingLibraryElementError: Unable to find an accessible element with the role "heading" and name °/Recipe list/i’

Here are the accessible roles:
heading:

Name "Hello there ! This is the recipes page of CookBook":

Ignored nodes: comments, <script />, <style />

Hello there ! This is the recipes page of CookBook

Figure 2.42: The failing result of the test

So, we are having an error message about the heading that not fits the expectations
that we are created. This explained with the following code line:

ing).toBeInTheDocument()

Figure 2.43: Test code line that triggers the error

In simple words the testing process is contains creating the logic of what expected as
a result of component or function job. Here we see that we expect this element to be
rendered in the component as shown in Figure 2.44:

screen.getByRole('heading', {

name; /Recipe list/1i,

Figure 2.44: Test code with text that should be on the page

So as a result of it we are getting error as its not exists. Let us follow the test
requirements and add the required text into element like this:

Using design patterns in Next]S

51

e { NextPage } from
from 'next/link'

const RecipelList: Ne
return (
<div>
<h1>Re
</div>
)
+

export default Re

Figure 2.45: Updated component code

Now the result of the test will look like the following figure:

recipe.test.jsx
index.test.jsx

Test Suites: 2 passed, 2 total
Tests: 2 passed, 2 total
Snapshots: @ total

Time: 1.02 s

‘t Done in 2.09s.

Figure 2.46: Success result of the test code run

All tests are passed and having a green color. In the end we are having the correct

development flow where we create the requirements for the code before we create

the code itself.

Next step is to cover after rendering the process and create the E2E test. To do it
create the file “recipe-list.spec.ts” in “e2e” folder that will contain the following

code:

000
import { test, expect, Page } from '@playwright/test';

test.describe('Recipe page result', () => {

test('should open the created page in browser', async ({ page }) => {
await page.goto('http://localhost:3005/recipe-1list')
awailt expect(page.locator('hl')).toHaveText('Recipe list will fail')

Figure 2.47: E2E test example with an open page action

52 Next.js Cookbook

Now we can check the test by typing “yarn test:e2e” in the console. The result will
look as shown in Figure 2.48:

Error: € toHaveText

Expected string:
Received string:
Call log:

, ({ page }) = {
page.goto()
expect(page. locator()) . toHaveText(

Figure 2.48: Failing test result for the E2E test

The browser will be opened and the result page will appear as shown in Figure 2.49:

All '3 Passed 0 Failed '3 Flaky ‘0 Skipped 0

recipe-list.spec.ts 19.1s

Recipe page result > should open the created page in browser recipe-| pec chromium) 6.1s

Recipe page result > should open the created page in browser rec i firefox) 6.9s

Recipe page result > uld open the created page in browse! pe- pe 4 webkit) 6.1s

Figure 2.49: E2E test reporting page

As we can see the test is failed. But we made it ourselves just to show how the
process will look like this. Let us fix this by typing the correct text in the expected
area as depicted in Figure 2.50:

Using design patterns in Next]S 53

000
import { test, expect, Page } from '@playwright/test';

test.describe('Recipe page result', () => {

test('should open the created page in browser', async ({ page }) => {
await page.goto('http://localhost:3005/recipe-list')
await expect(page.locator('hl')).toHaveText('Recipe list')

Figure 2.50: Updated text that expects correct data

Now the result will be like Figure 2.51:

yarn run vl.

Running 3 tests using 3 workers

o open last HTML report run:

'+ Done in 2.77s.

Figure 2.51: Success result of the test

Hence, all the tests are green now.

Conclusion

There is no special purpose to not to think about the code quality in the very
beginning. In most of the cases, software developers think that if we use Agile then
we can just do a lot of refactoring all the time. It is true on one side, but on the other
side, hardly structured code base is not open to refactoring and scalability.

We can hardly recommend using the knowledge from this chapter to use in your
next new application. It will give you a hundred steps forward to create a very clean
and scalable codebase in the future.

In the next chapter we are going to learn what is authorization from the application
perspective and how to design and startimplementing alogin form in our application.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com
El

e
Elu

J

CHAPTER 3

Authorization in a
glance with Next]JS

Introduction

Any modern application that is possible to invent today requires a personal user
area. To achieve this - we will need authorization. There are several possible ways to
create and implement auth system into your application. There are also super-simple
solutions that require only implementing the auth system into the application (like
AWS Amplify or Google Firebase) as well as the solutions that involve coding and
architecture.

To understand how exactly the authorization is working, we will do everything
manually from the raw stage with idea creation to the final realization.

Structure
e Creating the authorization form
o How to mock your first component using pencil and your ideas?
How to split component into generic components?
Separating global styles form local styles for any component

Creating the code logic structure for authorization form

©c © O O

How to write tests for authorization form?

56 Next.js Cookbook

e From unit test to Next]S component
o How to follow the TDD way in creating the components?
o How to debug tests while developing?

e Advantages of REST way authorization

e Advantages of GraphQL authorization

Objectives

In this chapter we will start working with authorization and touch the topics what
is the authorization itself and how to start creating the authorization from the start
to ready application. Also we will be introduced how to use it with the test driven
development and compare the http connection ways using REST and GraphQL
ways of connections

Creating the authorization form

From the user perspective, there are not many ways to get into the personal area not
using the special pages or interfaces for it. To pass the user into the personal area
we will need the authorization form in our system that will contain the login and
password fields log in.

There is no reason to start coding immediately when you get the task to create
something. Before that, we will need to do some preparations that will help us and
save a lot of time. Always remember: the code is only the realization, what matters
is your logic and idea.

Mocking your first component using a pencil
and your ideas

Let us start creating our first component and for the first step, we do not need
anything except something to draw and a quiet place to think. You can use any
comfortable tool as nowadays there are a lot of free tools out there for example .
Figma, but at the current state, we can just use the pencil and paper.

Let us create some requirements that will help us to proceed with everything. We
will call it General requirements:

e The form will use a separate page

o All form states will be provided on one page

o Possible form states

Authorization in a glance with Next]S 57

Login form
Login form with error

Welcome layout with redirection and count down in 5 seconds

e The form will contain 2 input fields

o Login field

Should take only English letters

3 letters minimum

100 letters maximum

All HTML special characters must be removed from the input

The error about validation should be shown if we change focus or
click on a submit button (that also changing of focus)

The input field should have a “text” type

o Password field

Should take only English letters

8 letters minimum

50 letters maximum

All HTML special chars must be removed from the input
Data inside should contain one Capital letter and one number

The error about validation should be shown if we change focus or
click on a submit button (that also changing of focus)

The input field should have a “password” type

0 Submit button

The button is always active

If we do request into API we should disable the button and show
animation for the call

Click on the button should contain prevent default logic to prevent
bubbling clicks outside of the form

The background color should be #84DCC6

e The form should be vertically and horizontally aligned to the page center

e Form max-width should be 800px
e Form background color should be # EEF7FB
e Form error color should be #FFOAOA

58 Next.js Cookbook

Now when we have all requirements, we can draw some mockups for our
authorization system. In the Figure 3.1 we see the mock up for the login form that
will be used to enter the private user area.

Next]JS Cookbook

Authorization

Login

Figure 3.1: Login form mock

When we did some mockups for the login page we can proceed with requirements
and create a layout for the errors that will look like this:

Next]JS Cookbook

Authorization

Login

Error on input

Figure 3.2: Login form mock in case if there are some errors in the credentials

Authorization in a glance with Next]S 59

The last one if everything is correct will look like this:

NextJS Cookbook

Authorization

Welcome,
Y%username%
you will be redirected in
...5 seconds

Figure 3.3: Mock for success authorization screen

Now we have everything to start coding. But before that, we will look at the Atomic
design system to create a better structure for the UI of the application.

Splitting components into generic components

What is atomic in general? Atomic Design is a methodology created by Brad Frost
seeking to provide direction on building interface design systems more deliberately
and with explicit order and hierarchy.

There are several levels of elements that is presenting the design level for each
component that contain level names: Atoms, Molecules, Organisms, Templates,

Pages all appear like in Figure 3.4:

e 0000
O OO 0000

Atoms Moleculas Organisms Templates Pages

Figure 3.4: Atomic design methodology scheme

60

Next.js Cookbook

Let's describe what Figure 3.4 means:

Atoms are the building blocks of al matter, and in the context of Atomic
Design, atoms are the smallest, most basic elements of a user interface.
Examples of atoms include individual HTML elements like buttons, form
inputs, and icons.

Molecules are collections of atoms that have been grouped together to create
more complex Ul elements. Examples of molecules include forms, search
bars, and cards.

Organisms are combinations of molecules that form distinct sections of an
interface, such as headers, footers, and navigation menus.

Templates are higher-level representations of how an interface might be
structured, and they typically include a combination of organisms, molecules,
and atoms. Examples of templates include homepage templates and product
detail page templates.

Pages are the final level of Atomic Design, and they represent the specific
instances of templates that are used to deliver content to the end user.

As Next]S is using this pattern for the pages we will use it for the smaller components
to follow the good practice of application creation with React (and NextJS in general).

So following this system we will have this structure of possible components. We will
call it UI requirements:

Atoms
o Login input
» Should have a placeholder: Enter your login
o Password input
» Should have a placeholder: Enter your password
o Submit button
* Should have a label: Login
Molecules
o Login form and Welcome message layout
» Should contain form
» Should contain error field
= On success, the form should be switched to welcome text
Organisms

o Authorization layout that centered on page CSS rules

Authorization in a glance with Next]S 61

e Templates
o System messages and auth
e DPages
o Login page
As we do not have so many different elements at the current state we will not use
Organisms and Templates for the current example as it will be just a wrapper for the

component that will not do anything. But we will extend it in the next chapters. For
now, the structure of our application should appear like Figure 3.5:

hello.ts

Figure 3.5: Structure of the project that will represent Atomic system

Separating global styles from local styles for
any component

As we are following the Atomic design it is also a good practice to split your styles
into a meaningful part to have more convenient maintainability.
To achieve it let us split all styles into four pieces:

e Design tokens

e Global styles

o Utility classes

e Component styles

62 Next.js Cookbook

Design tokens, global styles and utility classes are mostly universal styles for the
project not separated for each component. In the Design tokens, we will store all
possible variables for the application as sizes, colors, margins, and other properties.
The file will be named ‘variables.scss’. We already have a file named ‘colors.
scss’ so all content from it will be moved into variables. For the Global styles, we
will use the file named ‘globals.scss" that already exists in the system. In global
styles we will store typography styles, layouts settings and styles. In the Utility
classes we will store all possible mixins and functions that can be reused in some
components but are not required for all of them so should not be stored in the
globals.scss file. Let us name the file as "utilities.scss’.

And the last one for the Component styles we will use the system that we already
use as <module-name>.module.scss. In this style file we will store components
specific styles for example, buttons, forms, inputs

Creating the code logic for the authorization
form

As we created the requirements for Ul before we need also to extend the requirements
for the business logic as authorization is not only the login form.

In simple words the authorization should work like as shown in Figure 3.6:

Auth Server

ocess Loken ©
Refresh token

Web
Client

U Ser Credentials ;l Data base

Token

N4

Resource Server

Figure 3.6: Authorization scheme as high-level architecture

To access any resource at the resource server we need to have a token. There are two
kinds of tokens: Access token and Refresh token. The access token is responsible,
literally for the access to the resource and the refresh tokens are required in case
when the access token is expired. What is meant here is to have the possibility to
access any web page or data we need to call it with a special key (Access token).
But for the security reason this token should be expired in some amount of time (for
example. each 1 hour the token becomes useless). After that API should regenerate
the token using also some permission to do it (Refresh token). And now we can use
the system as long as we want.

Authorization in a glance with Next]S 63

Token should not be hashed, but rather encrypted, as hashing is a one-way
function that cannot be reversed. Encryption, on the other hand, can be
decrypted with a key, allowing the token to be verified and decoded by the
resource server.

Let us extend our requirements and add some points about API responses. We will
call it Business logic requirements:

e APIshould answer with the hashed string that we will call token if login and
password are correct. Answer code — 200.

e Ifthelogin or password is incorrect answer code should be 401 (which means
literally that it is unauthorized). This code is standard for unauthorized
request.

e Therefresh token should be used to regenerate a new token every 60 minutes.

¢ If none of the tokens are valuable - redirect the user to the login page.

This is a good fallback option to ensure that users cannot continue to access
resources without valid credentials. However, it is important to consider
how you will handle situations where the user’s session has timed out or
the refresh token has expired. In these cases, we can provide a specific error
message or prompt the user to log in again. In our case we will not do that as
its out of the scope of this book

Using all requirements we can start with coding. But before that also using
requirements we need to cover our code with all possible tests.

Writing tests for the authorization form

The application requirements are the best approach to start with the test development.
But first of all, let us talk a bit about what is tests means.

In software development, there are not many ways to achieve the point when we
can understand that an application or even a small part of it is ready and up and
running. On one hand, we can check the requirements manually each time when we
do changes or updates. On other hand, we can automate this process and not waste
time on paperwork. To save time and have more safety we should create the tests
that cover our requirements point by point.

Let us look at our General requirements from the upper scope. The requirements it
itself is produced in the same pattern as we need to create the test:

<Name of the logical part> => <should have current result>

64 Next.js Cookbook

For example, we have the requirement “Possible state of the form => Login form
with error”. That means that we need to create the test that will cover provided
logic like this:

If we have the error in the form => This error should be stored in the
form state

Pretty simple and this is a good part of testing the application before coding. It is
pretty simple as it is covering the provided requirements from the human text into
the programming language.

From unit test to Next]S component

In the development flow, there are no strict rules on what requirements should be
made first. We will stick to the rule “From smaller to bigger” and the order of test
development will look like this:

e Ul requirements
e General requirements

e Business logic requirements

The motivation for this ordering is that we will produce tests from smaller
components to bigger logical parts.

Following the TDD way in creating components

We will start with Ul requirements and will follow them in the test driven development
way of creating. Atoms say that we need 3 elements in there so let us make the
test that will expect these elements exist. Also, we will create one more helper file
that will contain the placeholders for all possible inputs. These placeholders we will
use as a query selector for the test (you could use any identification that is more
convenient for you, this is not mandatory).

In the core folder, we will create the configs folder with the index file inside. Put this
code inside to create the configuration for the placeholders and the labels as shown
in Figure 3.7:

Authorization in a glance with Next]S 65

enum Placeholders {
TEXT_INPUT = 'Enter your login',
PASSWORD_INPUT = 'Enter your password',

enum Labels {
SUBMIT = 'Login'

export { Placeholders, Labels }

Figure 3.7: Application configuration for the authorization

These enums already follow the UI requirements. Next, we need to create the unit
test file in the __tests__ folder. In this file, we will need to have this code to start:

import React from 'react'

import { render, screen } from '@testing-library/react'
import TextInput from '../ui/atoms/text-input'

import PasswordInput from '../ui/atoms/text-input'

import SubmitButton from '../ui/atoms/submit-button'

import { Labels, Placeholders } from '../pages/core/configs'

describe('UI inputs must render properly', () => {
it('renders a text input', () => {
render(<text-input />)
const input = screen.getByPlaceholderText(Placeholders.TEXT_INPUT)
expect(input).toBeInTheDocument()

})

it('renders a password input', () => {
render(<password-input />)
const input = screen.getByPlaceholderText(Placeholders.PASSWORD_INPUT)
expect(input).toBeInTheDocument()

})

it('renders a submit button', () => {
render(<submit-button />)
const submit = screen.getByText(Labels.SUBMIT)
expect(input).toBeInTheDocument()

Figure 3.8: Tests for the login form that we will use to create the form

66 Next.js Cookbook

If we start our tests now all of them will be failed. We expect components that still
do not exist in the system. Moreover, even if they will exist they should follow the
requirements and contain text inside. That means that we can proceed and follow
our first TDD requirements.

In the end our components will look like this:

1. Regular input component will contain the code that is presented on the
Figure 3.9:

n

import { Placeholders } from "../../pages/core/configs"
const TextInput = () => {
const input = {
placeholder: Placeholders.TEXT_INPUT
I
return (
<input type="text" placeholder={input.placeholder} />
)
}

export default TextInput

Figure 3.9: Reqular text input component

2. Password input component will contain the code that is presented on the
Figure 3.10

{ CN
import { Placeholders } from "../../pages/core/configs"

const PasswordInput = () => {
const input = {
placeholder: Placeholders.PASSWORD_INPUT
¥
return (
<input type="password" placeholder={input.placeholder} />
)
}

export default PasswordInput

Figure 3.10: Password input component

Authorization in a glance with Next]S 67

3. Submit button component will contain the code that is presented on the
Figure 3.11

import { Labels } from "../../pages/core/configs"

const SubmitButton = () => {
const input = {
label: Labels.SUBMIT
I
return (
<button type="submit">{input.label}</button>
)
}

export default SubmitButton

Figure 3.11: Submit button component

Now, if we run the tests all of them will be passed as we have required components
with required text inside of them like shown in Figure 3.12:

$ yarn test

yarn run v1.22.17

$ jest

BIEEN tests /index.test.jsx
8 _ tests Jui.test.tsx

Test Suites: 2

Tests:

Snapshots:

Time: 3.671 s
Ran all test suites.
Done in G.14s.

Figure 3.12: Console result with all tests passed

Let us proceed with Molecules and create the form component that should contain
our atoms inside and render the form. We will create the test that will check if the
component renders and contains the required components.

The logical trick is that we need to call the same test cases to check if the element
is exist in the layout. To optimize it let us create the test object that will contain
elements that will be reused like the following figure:

68 Next.js Cookbook

o000

const testObject: {[key: string]: any} = {
isTextInput: (screen) => screen.getByPlaceholderText(Placeholders.TEXT_INPUT),
isPasswordInput: (screen) => screen.getByPlaceholderText(Placeholders.PASSWORD_INPUT),
isSubmitButton: (screen) => screen.getByText(Labels.SUBMIT)

}

Figure 3.13: Test code organization to optimize tests

We will use functions instead of direct calls as we do not have any rendered elements
on the screen at the start of the test, we need to render something first. To avoid any
errors here we can use the function that will take a screen as a parameter and check
on the call stage. Also we will need the function that will cover any expectation
depending on what object element is currently covered. That function will look like
the following figure:

o000

const expectation = (element) => expect(element).toBeInTheDocument()

Figure 3.14: Expectation sentence after optimization

After that, we can change our previous tests to use this object and function as shown
in Figure 3.15:

000

describe('UI inputs must render properly', () => {
it('renders a text input', () => {
render(<TextInput />)
expectation(testObject.isTextInput(screen))

})

it('renders a password input', () => {
render(<PasswordInput />)
expectation(testObject.isPasswordInput(screen))

1)

it('renders a submit button', () => {
render(<SubmitButton />)
expectation(testObject.isSubmitButton(screen))
1)
1)

Figure 3.15: Resulting test code that can work with any kind of input components

Authorization in a glance with Next]S 69

The full file with the test will also contain the new test that will contain the logic to
check if all elements exist in the layout: (Figure 3.16)

import React from 'react'’
import { render, screen } from '@testing-library/react'’

import TextInput from '../ui/atoms/TextInput'
import PasswordInput from '../ui/atoms/PasswordInput'
import SubmitButton from '../ui/atoms/SubmitButton'

import LoginForm from '../ui/molecules/LoginForm'
import { Labels, Placeholders } from '../pages/core/configs'

const testObject: {[key: string]: any} = {
isTextInput: (screen) => screen.getByPlaceholderText(Placeholders.TEXT_INPUT),
isPasswordInput: (screen) => screen.getByPlaceholderText(Placeholders.PASSWORD_INPUT),
isSubmitButton: (screen) => screen.getByText(Labels.SUBMIT),

}

const expectation = (element) => expect(element).toBeInTheDocument()

describe('UI inputs must render properly', () => {
it('renders a text input', () => {
render(<TextInput />)
expectation(testObject.isTextInput(screen))

1)

it('renders a password input', () => {
render(<PasswordInput />)
expectation(testObject.isPasswordInput(screen))

1)

it('renders a submit button', () => {
render(<SubmitButton />)
expectation(testObject.isSubmitButton(screen))
1)
1)

describe('Form should be rendered properly', () => {
it('renders login form', () => {
render(<LoginForm />)
const testKeys = Object.keys(testObject)
if(Array.isArray(testKeys) && testKeys.length > 0) {
testKeys.forEach((test: string) => {
expectation(testObject[test](screen))

Figure 3.16: Full code of the test to cover all possible inputs for the login form

70 Next.js Cookbook

As we started to test it - it will be failed as there are no such elements in the layout.

So we must create them in the LoginForm file to follow the test requirements like
Figure 3.17:

import TextInput from '../atoms/TextInput'
import PasswordInput from '../atoms/PasswordInput'’
import SubmitButton from '../atoms/SubmitButton'

const LoginForm = () => {
return (
<section>
<div>
<TextInput />
</div>
<div>
<PasswordInput />
</div>
<div>
<SubmitButton />
</div>
</section>

s

export default LoginForm

Figure 3.17: Login form starter to pass the tests

Let us update the test object as we have a requirement regarding the error layout
existing in the form.(Figure 3.18):

const testObject: {[key: string]: any} = {
isTextInput: (screen) => screen.getByPlaceholderText(Placeholders.TEXT_INPUT),

isPasswordInput: (screen) => screen.getByPlaceholderText(Placeholders.PASSWORD_INPUT),
isSubmitButton: (screen) => screen.getByText(Labels.SUBMIT),

isErrorField: (screen) => screen.getByTestId(TestIDs.ERROR)

Figure 3.18: Adding the error element into the testing objects

Here we will use a special identification that will be used only for tests. In the form
this layout will look like the following figure:

Authorization in a glance with Next]S 71

import TextInput from '../atoms/TextInput'

import PasswordInput from '../atoms/PasswordInput'
import SubmitButton from '../atoms/SubmitButton'
import { TestIDs } from '../../pages/core/configs'

const LoginForm = () => {
const errorTestID = TestIDs.ERROR
return (
<section>
<div>
<TextInput />
</div>
<div>
<PasswordInput />
</div>
<div>
<SubmitButton />
</div>
<div data-testid={errorTestID}></div>
</section>

¥

export default LoginForm

Figure 3.19: Adding the error element into the form

Also do not forget to update the configs with a new enum that will contain the ids
for the tests. Put “ERROR = ‘error’” inside of it.

Now we can try to test it again and the tests should also pass all the requirements:
(Figure 3.20)

Test Suites:

e total

5.823 s
Ran all test suites.
Done in 7.88s.

Figure 3.20: Success result for the application tests

For now, we cannot cover the style test without an actual render of the component
but we will come back to it in the next chapters where we will cover the E2E test

topic for the application. Also, we will come back to extend these tests in the chapter
about state management.

72 Next.js Cookbook

We can proceed with General requirements and extend our tests to fit them too. The
only possible to test without render cases is a type of language that will be in the
input value and the maximum length of the value. To complete our tests with it we
need to extend our test file and add some logic to it. First, let us add the function that
will generate a random string with characters and numbers like Figure 3.21:

const makeLogin = (length: number) => {
var result e
var characters ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
var characterslLength characters.length;
for (var 1 = 0; 1 < length; i1++) {
result += characters.charAt(Math.floor(Math.random() *
charactersLength));
}
return result;

}

Figure 3.21: Function to generate a random string

Now we can put this value into our input to check what is inside of it. In the test
itself, we need to check - if the language is wrong then the value should not be
changed like the following figure:

fireEvent.change(input, { target: { value: 'Tect' } })
expect(input).toHaveDisplayValue('")

Figure 3.22: This is how we will check the type of language. In this example, we use the Russian
word. Only English words are acceptable for the login

Now as you see the test will check if the language is not English then it should not
change the value of the input. For now, the test will fail as we do not have such logic
in the input. We need to extend our text-input component to provide such logic as
this in Figure 3.23:

if(isLetter(value) && value.length <= maxValuelLength) {
setValue(value)

}

Figure 3.23: Expression to follow test requirements

Authorization in a glance with Next]S 73

Having this logic in the component we will check if the requirements fit then we can
change the input value. As you can see, we did not provide the function isLetter
and we need to provide it. Let us create the folder in our core that will be named
“utils.ts”. This file will contain all utility functions and helpers for our application.
This file will be like this as Figure 3.24:

const islLetter = (str: string) => {
if (str.length === 0) return

return /[A-Za-z0-9]/.test(str)

export { isLetter }

Figure 3.24: Test to cover that string is not contain any special characters

As you can see we will check if the provided string does not contain any characters
that are not English or numbers or whitespace. The updated input component will
look like this if we will implement this logic inside: (Figure 3.25):

}

[JCN)
import { ChangeEvent, useState } from "react";
import { Placeholders } from "../../pages/core/configs"

import { isLetter } from "../../pages/core/utils";

const TextInput = ({ onLoginEnter, id } : any) => {

export default TextInput

const input = {

placeholder: Placeholders.TEXT_INPUT
}
const maxValueLength = 100

const [value, setValue] = useState('')

const onChangeHandler = (event: ChangeEvent<HTMLInputElement>) => {
const value = event.target.value
if(isLetter(value) && value.length <= maxValuelLength) {
setValue(value)

onLoginEnter(value)

}

return (

<input id={id} type="text" onChange={onChangeHandler} placeholder={input.placeholder} value={value} />
)

Figure 3.25: Full text of the component for the login

74 Next.js Cookbook

And the updated tests will look like Figure 3.26:

it('Should render login input and check that it can take only Englsh letters', () => {
render(<TextInput onLoginEnter={(value) => value}/>)

const input = testObject.isTextInput(screen)

expectation(testObject.isTextInput(screen))

[

fireEvent.change(input, { target: { value: 'BlxL> a4 } })
expect(input).toHaveDisplayValue('")

const generatedLogin = makelLogin(101)

fireEvent.change(input, { target: { value: generatedlLogin } })
expect(input).toHaveDisplayValue('")

Figure 3.26: Full text for the test of login input component

The login input is fully covered with possible unit tests and can be safely used in our
application. Now we need to use the same way to update the password input. The
component will look like the following figure:

import { useState } from "react"
import { Placeholders } from "../../pages/core/configs"
import { isLetter } from "../../pages/core/utils"

const PasswordInput = () => {
const input = {
placeholder: Placeholders.PASSWORD_INPUT
}
const maxValuelLength = 50
const [value, setValue] = useState('')

const onChangeHandler = (event: Partial<any>) => {
const value = event.target.value
if(isLetter(value) && value.length <= maxValuelLength) {
setValue(value)
}
}

return (
<input type="password" onChange={onChangeHandler} placeholder={input.placeholder} value={value} />
)
}

export default PasswordInput

Figure 3.27: Full text of password component

Authorization in a glance with Next]S 75

And finally, the UI tests file will look like Figure 3.28:

import React from 'react'

import { render, screen, fireEvent } from '@testing-library/react
import TextInput from '../ui/atoms/TextInput
import PasswordInput from '../ui/atoms/PasswordInput
import SubmitButton from '../ui/atoms/SubmitButton

import LoginForm from '../ui/molecules/LoginForm
import { Labels, Placeholders, TestIDs } from '../pages/core/configs'

const testObject: {[key: string]: any} = {
isTextInput: (screen) => screen.getByPlaceholderText(Placeholders.TEXT_INPUT),
isPasswordInput: (screen) => screen.getByPlaceholderText(Placeholders.PASSWORD_INPUT),
isSubmitButton: (screen) => screen.getByText(Labels.SUBMIT),
isErrorField: (screen) => screen.getByTestId(TestIDs.ERROR)

i7

const makeLogin = (length: number) => {
var result =y
var characters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789"
var charactersLength = characters.length;
for (var i = 0; i < length; i++) {
result += characters.charAt(Math.floor(Math.random() *
charactersLength));
I

return result;

const expectation = (element) => expect(element).toBeInTheDocument()

describe('UI inputs must render properly', () => {
i1t('renders a text input', () == {
render(<TextInput /=)

const input = testObject.isTextInput(screen)
expectation(testObject.isTextInput(screen))

fireEvent.change(input, { target: { value: 'tect' } })
expect(input).toHaveDisplayvalue('"')

const generatedLogin = makeLogin(101})

fireEvent.change(input, { target: { value: generatedLogin } })
expect(input).toHaveDisplayValue('"')
1)

it('renders a password input', () => {
render(<PasswordInput />)
const input = testObject.isPasswordInput(screen)

expectation(input)

fireEvent.change(input, { target: { value: 'Tect' } })
expect(input).toHaveDisplayValue('")

const generatedLogin = makelogin(51)

fireEvent.change(input, { target: { value: generatedlLogin } })
expect(input).toHaveDisplayValue('")
1)

it('renders a submit button', () => {
render(<SubmitButton />)
expectation(testObject.isSubmitButton(screen))

H

describe('Form should be rendered properly', () => {
it('renders login form', () => {
render(<LoginForm />)
const testKeys = Object.keys(testObject)
if(Array.isArray(testKeys) & testKeys.length > @) {
testKeys.forEach({test: string) => {
expectation(testObject[test](screen))

Figure 3.28: Full text of the test file after all updates

76 Next.js Cookbook

And if we try to start them all tests will be passed as illustrated in Figure 3.29:

3.649 s
Ran all test suites.
Done in 4.79s.

Figure 3.29: Success result for the tests

Debugging tests while developing

Sometimes we need to do some debugging as we do in any JS code. The
difference is that doing the test with Jest we cannot see anything in the browser
and do not have a console. But this problem is easy to solve with the VS Code
extension that can be grabbed here by this link https://marketplace.visualstudio.
com/items?itemName=Orta.vscode-jest. Wising this extension we can put the
breakpoints in the test like Figure 3.30:

describe('UI inputs must render properly’,
nders a text input’, {
der (<TextInput />

const input = testObject.isTextInput(screen

expectation(testObject.1 <tInput(screen)

fireEvent.cha input, | target: { value: 'tect’ }
expect(input).toHav .

const mak rin(101

: { value: generatedLogin }

Figure 3.30: Debugging points that will trigger stop at point

Authorization in a glance with Next]S 77

And after that, we will have the possibility to do a debug by selecting it in the
dropdown menu like the following figure:

const ation = nent) - =: (element).toBeInTheDocu

AncomibaftuT Sapitg-must- render-properly’, =>-{
L L text input’, =
Debug Test tIn put _,.r‘ >
Reveal in Test Explorer

= testObject.isTextInput(screen
Add Breakpoint

Add Conditional Breakpoint-. 4 o ctghject. isTextInput (screen)

Add Logpoint...

firekEvent.change(input, | target: { value:

Figure 3.31: This is how you can enter debug mode

If you will start it then the plugin will generate the interface with debugging tools
to follow all possible debugging steps. You can see it at the top and right part of the
screen in the following image:

RUNAND.. [> Runnpmstariv & -

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 " ;
characters. length;
ngth; i++) {

charactersLength);
§
return - result;

¥

e("UI inputs must render p
ders a text input”, () => {
er(<TextInput />
testobject.e isTextInput(screen

tion(testobject.e is nput (screen)

firekvent.s c i { value: ‘Tect' }

fireEvent. 5 value: generatedLogin }
ct(input £

it(‘renders a password input',

Figure 3.32: This is how debug break points are looks like

The stop on a breakpoint will provide you with all possible information to figure out
how to proceed with the current breakpoint like Figure 3.33:

78 Next.js Cookbook

tation = - (element) =>-ex
i eholders.TEXT_INPUT)

be('UI inputs must render prope
rs-a text input-, =>
er(<TextInput />

const-input-= | D testobject.s is1 ’

expectation(testObject.» isTextInput(screen)

Figure 3.33: Information that is provided at the break points

Choosing the next steps way

The authorization itselfis not only the form to login but the whole system environment
that is connecting a frontend with API and even in the frontend, there are a lot of
things that we need to cover. In the next chapter, we will proceed with it but now
let us discuss modern ways of API construction as in Next]S we can create full-stack
applications using any possible way of the realization.

Advantages of the REST way authorization

Here is a pretty simple answer for the advantages:
e Itis easy to monitor as there is not only 200 OK answer from the API
e Itis possible to create a micro-service architecture and scale your API service
e Itis possible to cache your requests

e Do not require additional software and can be easily implemented using
Next]S server-side possibilities (as it is regular NodeJS application) and
because of that can be done even without a database in the system.

On the other hand, for the client-based applications, we could do a lot of API changes
before going live, and all these changes will require changes in the APL

Advantages of the GraphQL way
authorization

In the GraphQL way, some points could be critical when we do a decision:

e Itautomatically syncs all documentation on any schema change so we do not
need to document it manually.

e The data can be fetched with one API call instead of multiple calls.

Authorization in a glance with Next]S 79

e Allschemas canbe changed on the fly and do not require complex deployment
from both sides.

But it can be overkill for the small apps and also require more servers at the API side
as we need an Apollo server. Also, it is easy to DDoS if we miss access somewhere
and the hacking software will be able to create the nested call. This point could
create a security issue if we miss some points in the deployment stage.

In this book, we will create a universal solution that will use a model pattern that
could be used for any kind of API no matter what we choose.

Conclusion

In this chapter, we started with a very important topic that we will use in the whole
application that we will develop in this book. Also, the important thing is not only
to write a code but to understand how to start and what to do before coding. What
to do before creating an application and what safe tests should and must be done
before any code is created.

We now know that authorization is not only the login (or log in and registration)
forms, it is more than that and requires accuracy and patience to complete the task.

In the next chapter, we will talk about the server side of Next]S and we will create
the API for our application.

After that, we will touch on the topic of state management and in this part, we will
be able to complete the task with authorization to the end.

As you see, the authorization at the glance will require a lot of knowledge, but no
worries - everything will be covered soon. See you in the next parts.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com
El

e
Elu

J

CHAPTER 4

Server-side power of
Next]S

With great power comes great responsibility

— Ben Parker

Introduction

In this chapter, we will introduce the part of NextJS that makes it dominate in
comparison with all possible competitors in front-end development. In this chapter,
we will create the backend API that could be used as backend-for-frontend or as the
only backend for future applications.

Why would we need this possibility at all? We must always keep in mind that the
browser is not hiding the network history so we can see what request was triggered
and what host was used for it. That could be a problem with DDoS attacks and XSS
attacks and in the end, could produce a data leak that also can become a problem.

82 Next.js Cookbook

€ Cc &
amazone o

Alle Bestseller AmazonBasics September Angebote Kundenservice

Hore Musik in jedem Raum
alexa
SN

Gebraucht kaufen, Entdecke nac|
Produkte retten Produkte

Alle Angebote

Figure 4.1: Network activity form the amazon web site

For example, in Figure 4.1 we can see all requests on Amazon.de. From now on we
can do anything we want with these endpoints. To reduce vulnerability, we could
proxy all requests from different places. To achieve that we can use the backend-for-
frontend way and not show what requests real we will do and what real response
we will get.

Structure
e Using Next]S as an API server

o Creating simple NextJS API routing structure
o Writing simple API in Next]S
o Generating authorization token for user
e Using Singleton, Builder and Strategy patterns in API construction
o Baking Singleton for API
o Baking Builder for API
o Backing Strategy for API
e Using Apollo client for Next]S
o Creating models for your Next]S application
e Writing connecting system for Apollo
o Reusing API from previous recipe for Apollo?

o Setting up Apollo client for NextJS

Server-side power of Next]S 83

Objectives

In this chapter we will learn how to use a server side possibilities of the NextJS to
use at as a full-stack platform that have a frontend and the backend. We will also
reuse knowledge of the design patterns to create the maintainable and scalable code
for the application and also will create and connect Apollo server to our application.

Using NextJS as an API server

We do not need any particular setup or configuration to use this feature in the
framework. But as you remember we made a configuration for the whole project
and have page extension requirements. We can use this extension for API fails but to
make them more readable let us add something into the configuration in the next.
config. js file as shown in Figure 4.2:

const nextConfig = {
reactStrictMode: 5

styledComponents: s
pageExtensions: ['page.tsx', 'page.ts', 'page.jsx', 'page.js', ‘api.ts', 'api.js'l]

Iy

module.exports = nextConfig

Figure 4.2: Required changes in configuration to use framework as REST API

We will add api.js/ts requirements into the configuration. This will help us to
create a more beautiful URL for the API as shown in Figure 4.3:

&« C @ localhost3005/api/helle

{"name™:"John Doe™}

Figure 4.3: Response of the api using new configuration

Creating the simple Next]S API routing
structure

In the previous chapters, we were making the authorization form that will require
an API call that will allow the user to enter the private area. We will stick to this task
when we make a simple routing structure.

84 Next.js Cookbook

As all our API endpoint files should be located in the API folder let us create the auth
folder inside and create several endpoints as shown in Figure 4.4:

2 components

Figure 4.4: API folder structure that we will use for the application

We added 2 endpoint files. Inside hello.api.ts file place code from Figure 4.5 to make
these endpoints work:

| NN
import type { NextApiRequest, NextApiResponse } from 'next'

type Data = {
login: string

}

export default function handler(

req: NextApiRequest,

res: NextApiResponse<Data>
) {

res.status(200).json({ login: 'John Doe' })
}

Figure 4.5: Code source for the api endpoint files

Now when we will try to enter the endpoint in the browser (or any application to
check REST requests like Postman) we will see this in the response (Figure 4.6):

login

favicon.ico

Figure 4.6: Response for the login url call

Server-side power of Next]S 85

Creating the simple Next]S REST API

To have a well-architecture REST API, we should remember that all our calls should
be separated to have GET, POST, UPDATE and DELETE requests. The type of request will
come in the handler function parameter req. To use it we can call req.method like in
the following figure:

export default function handler(req, res) {
if (req.method === 'GET') {

} else {

}
}

Figure 4.7: Example of how to separate different types of HI'TP call

Let us stick to the login endpoint. For now, we will use only the POST type to send
login and password into the API and get the result from it that will contain rejection
or the authorization key that we will use in further requests. We will use the same
way as we did for the frontend part and create the core folder that will contain
business logic for the API. We will need it to make the API at the Next]S side more
abstract to have the possibility to use the API as backend-for-fronted and as a stand-
alone API with the same code base.

Now to create our first simple API endpoint let us follow these steps. Create the
configuration file in api/core/ folder and name it configuration.ts. Put this code
into it. We will need the enum with default messages for our API in the following
figure:

enum Configuration {
CORRECT_REQUEST = 'Success !',
WRONG_REQUEST = 'No such request'
}

export { Configuration }

Figure 4.8: API configuration file source

86 Next.js Cookbook

After that, we can add this code to the login.api.ts file in the following figure:

import type { NextApiRequest, NextApiResponse } from 'next'
import { Configuration } from '../core/configuration'

type Data = {

message: string

¥

export default function handler(
req: NextApiRequest,
res: NextApiResponse<Data>

) {

if (req.method === 'POST') {
res.status(200).json({ message: Configuration.CORRECT_REQUEST })

} else {

res.status(200).json({ message: Configuration.WRONG_REQUEST })

Iy

Figure 4.9: Login endpoint code

To test all REST requests we will use the Postman app (you can use any that is
more comfortable for you). This is what will be for the POST request shown in the

following figure 4.10:

paCE TEW——TMpOTT

> Postman Echo

> Writing test scripts

Body Cookies

WAL e e

http://localhost:3005/api/auth/login

POST v httpiflocalhost:3005/apifauth/login|

Params Authorization

Query Params

KEY

Headers (7,

Headers (8

Pretty Raw Preview

wow e

"message":

"Success 1"

Test Results

[save ~

DESCRIPTION

@ 2000k 37ms 256E SaveResponse

Cookies

Bulk Edif

CICY

Figure 4.10: Test of the API call in Postman application for the POST request

Server-side power of Next]S 87

That is what we will see for the GET request shown in the following Figure 4.11:

= http://localhost:3005/api/auth/login [B) Save
> Postman Echo
> Writing test scripts GET ~ http:/flocalhost:3005/apifauth/login m R
Params Authorization Headers (8) Body @ Pre-request Script Tests Settings Cookies
Query Params
KEY VALUE DESCRIPTION soo Bulk Edit
Body Cookies Headers (7) Test Results @ 2000k 33ms 262B SaveResponse v
Pretty Raw Preview Visuaize JSON v = © Q
2 essade “No h
3
nd Replace B Console © Bootcamp [Runner [Trash FH @

Figure 4.11: Test of the API call in Postman application for the GET request

The “No such request” message that we provide from the configuration.

Generating an authorization token for the user

For the authorization APL, we will need the token key that will be used whenever we
will need to get something from the API inside the personal user area.

To complete this task we will need a simple string generation function. In real-life
applications, we would need to encode and prepare with some business logic the
token. We will not stick to it as it is not part of our topic. For now, we need some code
that will be unique. For this let us create the utils file where we could store functions
like this shown in the following Figure 4.12:

const generateToken = () => {
return Math.random().toString(36).substr(2) + Math.floor(Date.now() / 1000)
}

export { generateToken }

Figure 4.12: Function for the random token key generation

88 Next.js Cookbook

We can try this function as shown in Figure 4.13:

onst generateToken = () =» {
*n Math.random().to5tring(36).substr({2) + Math.floor(Date.now() / 108@)

Figure 4.13: Result of generateToken function call in browser console

As we can see - now we have a random string token that we could use for the login
APIL

Using Singleton, Builder, and Strategy
patterns in API construction

As we learned from previous chapters, using the patterns will help us create readable
and maintainable architecture that we can change or scale by request. So let us speak
about where to start and what design we will use for each action and property.
The list of patterns by the requirements will look like this:

e Singleton for login request and login state

e Strategy for the request type (as we will need a possibility to connect to an
external API)

e Builder for the user profile build

Baking Singleton for API

We will start with file creation and the name of the file will be login.service.ts.
This file will contain the login call as a function and login state. We will also make
the condition private so we will need the getter function. (Figure 4.14):

Server-side power of Next]S 89

class LoginService {
private static instance: LoginService;
private isLoggedIn: boolean = 3
private constructor() {}

public static getInstance(): LoginService {
if (!'LoginService.instance) {
console.log('LoginService new instance')
LoginService.instance = new LoginService();

by

return LoginService.instance;

b

login() {

this.isLoggedIn =

}

getLoginStatus() {
return this.1isLoggedIn

¥
¥

export { LoginService }

Figure 4.14: Login singleton code

For now, we do not have any business logic for login as we will need to make the
login itself in the subsequent implementation with Strategies. After that, we will
come back and add this logic to our Singleton.

Baking Strategy for API

As we declared before a strategy pattern is required to separate possible ways of
getting the data from the data source and keep the logic structure the same. Let
us create the file with the name login-strategy.ts. Inside we will develop the
strategy class that will be called LoginContext with the login method inside. As we
need to use the same structure we will create the interface ILoginStrategy also. We
will require to make the mocks as we did it before also.

90 Next.js Cookbook

Let us start coding. First, we will create the mock data. To complete we will follow

the steps:
1.

Create the file with mock data in the folder where we store mock data for the

application.(<root>/pages/mocks)

2. Create file users.json and fill it with the data from Figure 4.15:

slser=:
"password":

"testUser",
"asdqwel23"

Figure 4.15: Mock data for the users

3. After that we can connect mock data to the application as its presented on

Figure 4.16:

import users from

const getMock = {
articles,
baking,
users

I

export { getMock }

import articles from "./articles.json"
import baking from "./baking.json"

./users.json"

Figure 4.16: Connection of the mocks to mocking system

4. Finally, we can create the strategy context file that will use strategies for the
login. To achieve this please create the login-strategy.ts file in <root>/pages/
api/core folder and fill it with code from Figure 4.17:

Server-side power of Next]S 91

class LoginContext {
private strategy: ILoginStrategy;

constructor(strategy: ILoginStrategy) {
console.log('Login strategy class is', strategy)
this.strategy = strategy

}

public uselLogin(user: string, password: string): IUser {
console.log('Now login is on fire')
return this.strategy.login(user, password)

Figure 4.17: Context file source that presents a strategy context

This is what the strategy context will look like. We will use a defined strategy class on
construction calls. For our case we do not have any data source except local mocks so
we will require this concrete strategy: (Figure 4.18):

class LoginWithMock implements ILoginStrategy {
public login(user: string, password: string) {
const users = getMock.users
const checkUser = users.find((userItem: {user: string, password: string}) => {

return userItem.user === user && userItem.password === password
})
let loginState = { state: false, token: '' }
if (checkUser) {

loginState = { state: true, token: generateToken() }

17

return loginState;

Figure 4.18: This is an exact strategy class code that will be used for the API

Now we can update the service but before that do not forget to add the required
interfaces to not use any in this case as shown in Figure 4.19:

92 Next.js Cookbook

interface IUser {
state: boolean;
token: string;

X

interface ILoginStrategy {
login(user: string, password: string): IUser;

X

Figure 4.19: Interfaces that will be used as a class types

To update the service we need to change LoginService class and add token param
like the following figure:

import { loginType } from "./configuration";
import { LoginContext } from "./login-strategy";
import { IUser } from "./types";

class LoginService {
private static instance: LoginService;
private isLoggedIn: boolean = false;
private token: string = '';
private loginState: IUser | 1 =
private constructor() {}

H

public static getInstance(): LoginService {
if (!LoginService.instance) {
console.log('LoginService new instance')
LoginService.instance = new LoginService();
}
return LoginService.instance;

}

async login(user: string, password: string) {

oqic i nan

const loginContext = new LoginContext(loginType);
this.loginState = await loginContext.uselLogin(user, password)
this.isLoggedIn = this.loginState && this.loginState.isLoggedIn;
this.token = this.loginState.token;

}

getLoginStatus() {
return this.isLoggedIn

}
getToken() {
return this.token

}
}

export { LoginService }

Figure 4.20: Updated code for the login singleton

Server-side power of Next]S 93

Also, let us do some changes in the configuration file to have the login type scripted
like the following figure:

L NN
import { LoginWithGQL, LoginWithMock, LoginWithAmplify } from "./login-strategy"
enum Configuration {

CORRECT_REQUEST = 'Success !',
WRONG_REQUEST = 'No such request'

)

enum LoginStrategiesNames {
MOCK = 'mock'

}

const LoginStrategies = {
[LoginStrategiesNames.MOCK]: new LoginWithMock()
)

const currentLoginStrategy = LoginStrategies[LoginStrategiesNames.AMPLIFY]

export { Configuration, currentLoginStrategy, UserBuilderMethods }

Figure 4.21: Updated configuration for the login
Perfect. We can now implement this service into the login component we made
before. But before we switch to implementation let us proceed with the builder.
Baking Builder for API

As we planned before we will use Builder for the user account data as there could
be different types of users, permissions, and so on. Let us just wrap it with a builder
pattern to make it easier to scale if something will be changed.

Inside the builder, there will be several producers that will be responsible for each
type of user that we could want to create at the current state, as shown in Figure 2.22:

94 [Next.js Cookbook

o000

import { UserBuilderMethods } from "./configuration";
import { IUser } from "./types";

interface UserBulder {
[UserBuilderMethods.PRODUCE_REGULAR_USER](): void;
[UserBuilderMethods.PRODUCE_UPDATED_USER](): void;

[UserBuilderMethods.PRODUCE_ADMIN_USER](): void;
Iy

class ApplicationUser implements UserBulder {
constructor(private user: IUser) {}

[UserBuilderMethods.PRODUCE_REGULAR_USER](): void {
console.log{ 'trigger build')
this.user.userPropertiesActions?.push('Regular properties')

}
[UserBuilderMethods.PRODUCE_UPDATED_USER](): void {
this.user.userPropertiesActions?.push('Updated properties')

}
[UserBuilderMethods.PRODUCE_ADMIN_USER](): void {
this.user.userPropertiesActions?.push('Admin properties')

Ij
Iy

export { ApplicationUser }

Figure 4.22: Builder class realization

As you can see we use the same code style as before so do not forget to create all
constants in the configuration as illustrated in Figure 4.23:

Server-side power of Next]S 95

oo0
import { LoginWithMock } from "./login-strategy"

enum Configuration {
CORRECT_REQUEST = 'Success !',
WRONG_REQUEST = 'No such request'
}
enum LoginStrategiesNames {
MOCK = 'mock'

i3

enum UserBuilderMethods {
PRODUCE_REGULAR_USER = 'produceRegularUser',
PRODUCE_UPDATED_USER = 'produceUpdatedUser',
PRODUCE_ADMIN_USER = 'produceAdminUser'

I3

const LoginStrategies = {
[LoginStrategiesNames.MOCK]: new LoginWithMock(),

}

const loginType = LoginStrategies[LoginStrategiesNames.MOCK]

export { Configuration, loginType, UserBuilderMethods }

Figure 4.23: Updated configuration to optimize builder code

We will also require changes in the data source as we now expect more data from the
source as illustrated in Figure 4.24:

(XN)
[
{
"user": "testUser",
"password": "asdqwel23",
"userProperties": ["PRODUCE_REGULAR_USER"]
}
]

Figure 4.24: Update in the users.json file

96 Next.js Cookbook

Now we need to make the last modifications in the service to get the builder into the
working state as shown in Figure 4.25:

import { types } from "sass";

import { loginType, UserBuilderMethods } from "./configuration";
import { LoginContext } from "./login-strategy";

import { ApplicationUser } from "./user-builder"

class LoginService {
private static instance: LoginService;
private isLoggedIn: boolean = false;
private token: string = '';
private applicationUser: ApplicationUser = {} as ApplicationUser
private constructor() {}

public static getInstance(): LoginService {
if (!LoginService.instance) {
console.log('LoginService new instance')
LoginService. instance = new LoginService();
}
return LoginService.instance;

¥

login{user: string, password: string) {
// Here we will provide the login logic depending on what strategy is selected
const loginContext = new LoginContext(loginType);
const loginState = loginContext.useLogin(user, password)
console.log('loginState', loginState)
this.isLoggedIn = loginState.state;
this.applicationUser = new ApplicationUser(loginState)
loginState.userProperties.forEach((property: keyof typeof UserBuilderMethods) => {

UserBuilderMethods[property] & this.applicationUser[UserBuilderMethods[property]]()

b
this.token = loginState.token;

}

getLoginStatus() {
return this.isLoggedIn

}

getToken() {
return this.token
+
}

export { LoginService }

Figure 4.25: Singleton update to properly login user

As you can see login method now operate with builder methods and create all
required data inside of it.

Let us switch to the UI form. Inside of it, we will need to get the data from the inputs
and send them into the service. So, your login form component should look like as
illustrated in Figure 4.26:

Server-side power of Next]S

97

import
import
import
import
import
import
import
import
import
import

TextInput from '../atoms/TextInput'

PasswordInput from '../atoms/PasswordInput'’

SubmitButton from '../atoms/SubmitButton'

{ TestIDs } from '../../pages/core/configs’

styles from '../../styles/LoginForm.module.scss'

{ LoginService } from '../../pages/api/core/login.service’
{ FormEvent, useState } from 'react’

{ useAppDispatch } from '../../pages/hooks'

{ changeAuthState } from "../../pages/store/authSlice";

{ useRouter } from 'next/router'

const LoginForm = () => {
const [login, setLogin] = useState('');
const [password, setPassword] = useState('');
const router = useRouter();

const dispatch = useAppDispatch();

const errorTestID = TestIDs.ERROR
const loginService = LoginService.getInstance()
const loginAction = async (event: FormEvent<HTMLFormElement>) => {

}

console.log('login');
event.preventDefault();
loginService.login(login, password);

const loginEnter = (value: string) => {

}

setLogin(value);

const passwordEnter = (value: string) => {

}

setPassword(value);

return (

}

<section className={styles.LoginForm}>
<form onSubmit={loginAction}>
<div>
<TextInput id="login" onLoginEnter={loginEnter} />
</div>
<div>
<PasswordInput id="password" onPasswordEnter={passwordEnter} />
</div>
<div>
<SubmitButton id="submit-login" />
</div>
<div data-testid={errorTestID} />
</form>
</section>

export default LoginForm

Figure 4.26: Login for component code

98 Next.js Cookbook

Now when we try to log in with credentials, we will fill the service data singleton.
That means that we could use this data on each page (if we do not reload the page).
To solve this problem, we will use one of the ways to store data in the browser but
for now it is enough to have the data itself.

To check that data is still in instance update the login page with the link to the main
page will appear as Figure 4.27:

00

import type { NextPage } from 'next'

import Link from 'next/link'

import styles from '../styles/Login.module.scss'

o) ¢
import LoginForm from '../ui/molecules/LoginForm’

const LoginPage: NextPage = () => {
return (
<article>
<LoginForm />
<Link href="/">Main</Link>
</article>

export default LoginPage

Figure 4.27: Login page component

Now on router change inside your console, you will see that the login service still
contains user data. That means that we can use this data for any purpose inside the
application as shown in the following figure:

user index.page.tsx?ac9a:9
v LoginService {islLoggedIn: token: 'zh978ggt30k1663073023', applicationUser: ApplicationUser}
v applicationUser: ApplicationUser
v user:

state: true
token: "zh978ggt30k1663073023"
v userProperties: Array(1)
0: "PRODUCE_REGULAR_USER"

gl
» [[Prototypell: Array(0)
» [[Prototypel]l: Object
» [[Prototypel]l: Object
isLoggedIn: t
token: "zh978ggt30k1663073023"
» [[Prototypel]: Object

Figure 4.28: Result of the login response in the browser console

Server-side power of Next]S 99

Using the Apollo client for NextJS

To start using the client we need to do a short setup to activate the server that we
could use for the requests to get the data from the GraphQL requests.

Apollo Server is working the same way as any regular node server software (for
example : Express or similar). To start setup we will need to create a folder and
install it. We recommend doing it in the same project folder for education purposes
and in a separate folder for real-world applications.

Enter the command as illustrated in Figure 4.29: in your console to create the required
folder:

mkdir cookbook-ggl-server
cd cookbook-gql-server

Figure 4.29: Commands to create the folder for the GraphQL server

After that we need to init npm project by entering the command shown in Figure
4.30:

npm init --

Figure 4.30: Command to init the application

Now we can add required dependencies to our server using npm as illustrated in
Figure 4.31:

npm install apollo-server graphqgl

Figure 4.31: Command to install the server in folder as package

Creating the model for the NextJS application

As for now, we need only users we will create the Scheme in Figure 4.32 this to
operate with users:

100 Next.js Cookbook

type User {
user: String!
password: String!
userProperties: [String!]!

}

type Query {
getUser(user: String!, password: String!): User

}

Figure 4.32: GraphQL schemas for the users

Writing the connecting system for Apollo

Let us create the server index file (like we do for any node js server). Create the
index js file in the server project root (use CLI or your IDE for it). Inside this file, we
can create the schema and queries to get the data.

const { ApolloServer, gql } = require(‘'apollo-server');
const users = require('../pages/mocks/users.json')

const typeDefs = gql’
type User {
user: String!
password: String!
userProperties: [String!]!

Iy

type Query {
getUser(user: String!, password: String!): User

It

>

const resolvers = {
Query: {
getUser: (obj, params) => {
return users.find(user => user.user === params.user && user.password ===
params.password)

>

}

const {
ApolloServerPluginLandingPagelLocalDefault
} = require('apollo-server-core');

const server = new ApolloServer({
typeDefs,
resolvers,
csrfPrevention: ue,
cache: 'bounded',
plugins: [
ApolloServerPluginLandingPageLocalDefault({ embed: true }),
1,
18

server.listen().then(({ url }) => {
console.log(# Server ready at ${url}’);
1)

Figure 4.33: Server file source to start the Apollo server locally

Server-side power of Next]S 101

To be more specific here we will go through this file together step by step:
1. const users: here we are getting data from mocks that were created before.
2. const typedef: this is a GraphQL Scheme that we will use in the application.
3. const resolvers: this is a definition of actions that will be triggered by query
call from the Scheme.
4. const server: this is a server instance where we connect all together .

server.listen: is a function that starts the server instance.

Now after the application start (type: node index.js in your console) we will see as
shown in the following figure:

Server ready at http://localhost:40006/

Figure 4.34: Success response log in the console after server start

To check that server is up and running we will open a sandbox here https://studio.
apollographql.com/sandbox and follow the instructions to add your current local
host into the sandbox like in Figure 4.35:

Connection settings

Update the connection settings for your Sandbox
Auto Update
Sandbox is polling your endpoint for schema changes every second
Endpoint
@ http://localhost:4000
Subscriptions Implementation

@ ws://localhost:4000 auto-detect

Include cookies OFF
Shared headers
header key

-+ New shared header

cancel m

Figure 4.35: Sandbox page that we will use for the testing

102 Next.js Cookbook

After that we can execute our first query by adding the following data into the query
frame of the page (Figure 4.36):

Operation

it query($user: String!, $password: String!) {
getUser (user: $user, password: $password) {
user
userProperties

Iy

Variables

"user": "testUser",
"password": "asdqwel23"

Figure 4.36: Query frame in the sandbox

Now on pressing the Run button at the right top corner we will see the result as
shown in Figure 4.37:

Response v STATUS 200 | 6.50ms | 83B

Root * data * getUser

PRODUCE_REGULAR_USER

Figure 4.37: Result frame in the sandbox

As you can see we got the correct user data.

Keeping in mind that we are making basiclogin and in the real application you should
not keep a real password in the database as should never send a real, not encrypted
password as a parameter from the form. Please check specific documentation about
this topic. For this book, this subject is out of scope.

Server-side power of Next]S 103

Reusing API from the previous recipe for
Apollo

As you remember in the previous part we made a strategy pattern and we made it
for the purpose. So now to reuse the same logic we need to add a new strategy class,
with only one update that would be required. As we will use GraphQL request we
would need to add async/await to methods that are already in the system.

First, we need to add Promise to the login method in the login strategy interface as
illustrated in Figure 4.38:

interface ILoginStrategy {
login(user: string, password: string): Promise<IUser>;

}

Figure 4.38: Updates that will be used in login strategy class

Then we will need some updates in the login service as illustrated in Figure 4.39:

async login(user: string, password: string) {

7 ere vill provide the login logic depending on what strategy is selected
const loginContext = new LoginContext(loginType);
await for th function

const loginState = await loginContext.useLogin(user, password)

this.isLoggedIn = loginState.state;

this.applicationUser = new ApplicationUser(loginState)

loginState.userProperties.forEach((property: keyof typeof UserBuilderMethods) => {
UserBuilderMethods[property] & this.applicationUser[UserBuilderMethods[property]]()

})

this.token = loginState.token;

Figure 4.39: Adding the async/await functionality for the login method

Now all login flow will be asynchronous and we can add the new strategy using the
Apollo client as illustrated in Figure 4.40:

104 Next.js Cookbook

class LoginWithGQL implements ILoginStrategy {
async gqlLogin(user: string, password: string) {
const { data } = await client.query({

query: gql’
query {
getUser(user: "${user}", password: "${password}") {
user
userProperties
}
:)
s

return await data

public async login(user: string, password: string) {
let loginState = { state: false, token: '', userProperties: [] }
const checkUser = await this.gqlLogin(user, password)
if (checkUser && checkUser.getUser) {
loginState = { state: true, token: generateToken(), userProperties: checkUser.getUser.userProperties }
}

return loginState

Figure 4.40: Login with GraphQL strategy class

Having this class, we can update the configuration for the API like this to activate
the new strategy as illustrated in Figure 4.41:

enum LoginStrategiesNames {
MOCK = 'mock',
GQL = 'gql’

const LoginStrategies = {
[LoginStrategiesNames.MOCK]: new LoginWithMock(),
[LoginStrategiesNames.GQL]: new LoginWithGQL(),

}

const loginType = LoginStrategies[LoginStrategiesNames.GQL]

Figure 4.41: Configuration update for the GraphQL realization

As you can see we have a minimal update in the code. Also if we will need to add a
new strategy it will require a minimum of updates in the code.

Setting up an Apollo client for Next]S

To add the Apollo client to your application we will first need to add it to our project
similar to what we did for the server as shown in Figure 4.42:

Server-side power of Next]S 105

yarn add @apollo/client graphql

npm install @apollo/client graphgl

Figure 4.42: Commands to add Apollo client to the project

When we successfully added the Apollo to our dependencies we can create the client
that we will use in the application. To do it please create the file named apollo-
client. js with the following code:

| NN
import { ApolloClient, InMemoryCache } from "@apollo/client";
const client = new ApolloClient({

uri: "http://localhost:4000",

cache: new InMemoryCache(),

g

export default client;

Figure 4.43: Source of the apollo-client.js file

The URL in Apollo Client object parameters is the URL of the server that we created
before. If you deployed it yourself (or had a server before) please use this URL in
this configuration.

Now we can open the login form page and try to log in again with the same
credentials. And console should return the same information as before as shown in
Figure 4.44:

login
Login strategy class is r LoginWithGQL {}
Now login is on fire

1-}}

Array(1)}

trigger build

Figure 4.44: Result of the api call in the browser console

106 Next.js Cookbook

Conclusion

In this chapter, we have been introduced to the server-side potential of Next]S. This
knowledge will allow us to create any kind of API using NextJS only no matter what
purpose we need. As you can see the server side of the NextJS is similar to a regular
Node]S application and can reuse any logic from your Express application for
example. Also now we can choose between the type of the API, REST or GrapthQL.

In the next chapters, we will do research in the state management area to make using
any data on the client side more smooth. We will also be introduced to AWS Amplify
for the API creation where we could use the knowledge from this chapter about
GraphQL and REST.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com
El

e
Elu

J

CHAPTER 5

Using state
management in

Next]S

Introduction

Sooner or later the application will start growing, ant number of components also. As
a developers we would like to have a system to communicate between components
faster and in the same time have a possibility to debug the data that is passing from
one component to another. For these purposes we will need a state management
system that we will discover in this chapter.

Structure

Using state-management tools in applications
Setting up Redux in Next]S

Writing tests for the store before we start coding
Creating Redux store objects in Next]S

Using the store for authorization in our application
Connecting data API to state management

Conclusion

108 Next.js Cookbook

Objectives

This chapter will teach how to add and use the state management system. As
an example system, we will use Redux as the most efficient and popular state
management system for React]S. Also, we will walk through the flow of creating a
store and code tests for the store and connect the store to the API from the previous
chapter.

Using state-management tools in
applications

The architecture of web applications is not only in data structures and data design
patterns. We also need to think about how to operate data between components and
react to data changes in these components. We need to create the mechanism that
will make the state of any object and follow the state machine principles.

In the web application world, we have several libraries for different platforms. As
Next]JS is based on React we will use Redux as a state management system.

In our application, we will need it to share the login information. Also, we will add
the kitchen system to order and cook the burgers we made in previous chapters.

Setting up Redux in Next]S

Redux is based on three principles:

¢ Single source of truth: The state of an entire application is stored in a
single object tree within a single store.

e State is read-only: The only way to change the state is by dispatching an
action, which is a plain JavaScript object describing what happened.

e Changes are made with pure functions: To specify how the state tree is
transformed by actions, you write pure reducers.

To add Redux to our project type following commands in the folder root: (Figure 5.1)

yarn add @reduxjs/toolkit react-redux
yarn add next-redux-wrapper

npm install @reduxjs/toolkit react-redux
npm install next-redux-wrapper

Figure 5.1: Commands to add Redux to the project

Using state management in Next]S 109

Writing tests for the store before we start
coding

Asyou remember, we use the test driven approach in thisbook to create an application
and any modules for the application. Implementing Redux will not be an exclusion,
but we have to introduce some things that will help you to more clearly understand
the whole way of using Test-driven development with Redux.

For the start, we will require to make some changes in the folder structure of the
application. Please add the store folder to the pages folder. Inside the store folder,
we will require __tests__ folder as well to collect the tests for the Redux store as in
Figure 5.2:

> api

? components
» core

> mocks

» store’, _ tesis

_app.page.ts| E\Mextl5_Boo

Figure 5.2: Updated folder structure to collect Redux files

Inside these folders, we will create our first files that will correspond to the auth state
for the application, like in Figure 5.3:

> api
» components

> core

Figure 5.3: Files for the auth state

110 Next.js Cookbook

In the specification file, we will add this code to start creating the tests. For now, it
will pass but we will remove the rule for test in the next steps: (Figure 5.4)

("Auth Slice", () => {
e("My First function", () => {

it("should compile", () => {
expect(1l).toEqual(l);

Figure 5.4: The code from authSlice.spec.ts file

Also, we will require to fill the store file with the code illustrated in Figure 5.5:

import { createSlice } from "@reduxjs/toolkit";
const authSlice = createSlice({

name: "auth",

reducers: {},

initialState: {},
s

export default authSlice.reducer;

Figure 5.5: Code for store file

We will add enough code to compile but stick to the rule that complete code should
be written after the test file is ready.

We will add the code into the store file to have something compile like Figure 5.6:

Using state management in Next]S

111

import { createSlice } from "@reduxjs/toolkit";

type Auth = {
isLoggedIn: boolean;

s

export type AuthState =
auth: Auth
}s

export const INITIAL_STATE: AuthState
auth: {
isLoggedIn:

const authSlice = createSlice({
name: "auth",
reducers: {},
initialState: INITIAL_STATE,

Dk

export default authSlice.reducer;

Figure 5.6: Minimal code to compile the store

We need to modify the reducers part to have a dummy reducer that will change the

state of the auth like Figure 5.7:

const authSlice = createSlice({
name: "auth",
reducers: {
changeAuthState: (state: RootState, action: PayloadAction<string>) => {
return state;
}
}
initialState: INITIAL_STATE,

});

export const { changeAuthState } = authSlice.actions;

Figure 5.7: Code update for the reducer

112 Next.js Cookbook

Now we can create the first test that will fail (in our case because we will make it fail
for now). The code is described in Figure 5.8:

import authSlice, {
changeAuthState,
INITIAL_STATE,
Auth,
AuthState

} from '../authSlice';

describe("Auth Slice", () => {
describe("My First function", () => {
it("should auth the user in the store", () => {
const auth: Auth = {

isLoggedIn:

s

const action = changeAuthState(auth);

const expectedResult: AuthState = {
auth,

};

const actualResult = authSlice(INITIAL_STATE, action);

expect(actualResult).toEqual(expectedResult);

Figure 5.8: Test file code, that will be failed for now

Now on the test start, we will get the message about failing the test like in Figure 5.9:

Object {
"auth”: Object {

actualResult = authSlice(INITIAL STATE, action);
expect(actualResult).toEqual(expectedResult);

at Object.toEqual (

Figure 5.9: Failing test message

Using state management in Next]S 113

To pass the test we need to modify the reducer to change the state with an action.
Please change the reducer code with the code provided in Figure 5.10:

const authSlice = createSlice({
name: "auth",
reducers: {
changeAuthState: (state: AuthState, action: PayloadAction<Auth>) => {

const newAuth = action.payload;
state.auth = newAuth;
}
}7
initialState: INITIAL_STATE,
})s

Figure 5.10: Updated reducer to pass the test

Now when we try to start the test again we will get this result: (Figure 5.11)

| __tests_fui.test.tsx
Console

console. log
LoginService new instance

at Function.log [as getInstance] (pages/api/core/login.service.ts:15:21)

__tests /index.test.jsx
nsole

console. log
LoginService new instance

at Function.log [as getInstance] (pages/api/core/login.service.ts:15:21)

console. log

user LoginService { islLoggedIn: false, token: ', applicationUser: {} }

at log (pages/index.page.tsx:9:11)

pages/store/ tests /authSlice.spec.ts

Test Suites:

Tests:

Snapshots: @ total
Time: 4.232 s
Ran all test suites.
Done in 6.82s.

Figure 5.11: All tests are passed and green

114 Next.js Cookbook

Creating Redux store objects in Next]S

To connect the store to our application we will need to create some objects. To achieve
it we will make some updates to the file structure and application files.

First, we will create the index. ts file in the store folder root like Figure 5.12.

Figure 5.12: Index file in the store folder root

Add the code from Figure 5.13 inside this file:

import { configureStore } from '@reduxjs/toolkit’
import authSlice from './authSlice';

import { createWrapper } from "next-redux-wrapper";
import articleSlice from './articleSlice';

export const store = configureStore({
reducer: {
[authSlice.name]: authSlice.reducer,
b
devTools: 5
1)

const makeStore = () => store;

export type RootState = ReturnType<typeof store.getState>
export type AppDispatch = typeof store.dispatch
export const wrapper = createWrapper<RootState>(makeStore);

Figure 5.13: Source of the index file

Let me explain a little about what we have inside this file. First, we need to configure
the store itself and we will use the configure store function for it. As you remember
we created the object in the auto slice that contains the name, actions and reducers.
So, we will use the name as a string and reducer as the reducer for the store. Also, we
will add a property devTools to get the information in the special browser extension.

Using state management in Next]S 115

One line can be confusing it is the line from Figure 5.14:

const makeStore = () => store;

Figure 5.14: Strange part of the file

This makeStore function is required by the wrapper function for the NextJS. This
code is only needed if you use the framework. In regular React applications, it will
not be required. So just copy and paste it from the example.

Next what we need to add the possibility to use hooks for the store. To add this
possibility to the application we will create a folder with the index file inside. It is
not part of the store as we could create and add hooks unrelated to the Redux.

Please check Figure 5.15 to make changes in your folder structure:

' COMPONE
layout.tsx

» core

Figure 5.15: Hooks folder and index file

Inside the index file, we will add this code to make hooks work for the application:
(Figure 5.16)

import { useDispatch, useSelector } from 'react-redux'
import type { TypedUseSelectorHook } from 'react-redux'
'../store'

import type { RootState, AppDispatch } from

export const useAppDispatch: () => AppDispatch = useDispatch
export const useAppSelector: TypedUseSelectorHook<RootState> = useSelector

Figure 5.16: Hooks file source code

Now we are ready to add the store to the application. Let us do some changes in the
app file of the application like in Figure 5.17:

116 Next.js Cookbook

import '../styles/globals.scss'

import { Provider } from "react-redux";
import type { AppProps } from 'next/app'
import Layout from './components/layout'
import { wrapper } from "./store";

function CookBook({ Component , pageProps }: AppProps) {
const { store } = wrapper.useWrappedStore(pageProps);

return (
<Provider store={store}>
<Layout>
<Component {...pageProps} />
</Layout>
</Provider>
)
}

export default CookBook

Figure 5.17: Application file source with added store

Now we can check if everything is correctly set up. To make it we can use
the Chrome extension (or you can find the same for Firefox).You can install
it at this link https://chrome.google.com/webstore/detail/redux-devtools/
Imhkpmbekcpmknklioeibfkpmmfibljd?hl=en. The extension should look like in
Figure 5.18:

Home > Extensions > Redux DevTools

.+ Rediux DevTools

@ Featured

Y J ok 575 (D | Developer Tools | 1,000,000+ users

Overview Privacy practices Reviews Support Related

Watchon (8 Youlube

Figure 5.18: Chrome extension to debug Redux in the browser

Using state management in Next]S 117

Now after the page reboot we can open the developer tools and select the Redux
extension. There will be information about the current store that we have like in
Figure 5.19:

Actions Settings
® X & Reset 2031931146/1

filter

State Action | State | Diff | Trace | Test

@EINIT
Tree Chart Raw

Figure 5.19: Redux debug information for in developer tools

Using the store for the authorization in our
application

To do it we will do some changes in our code. First, we will rename the logged-in
state in the strategy interface to fit the store object naming;:

interface IUser {
isLoggedIn: boolean;

token: string;
userProperties: Array<keyof typeof UserBuilderMethods>;
userPropertiesActions?: string[]

Figure 5.20: Change state name to isLoggedlIn to fit the naming

Next, we will need to update the store to collect more data for the user. To achieve it
we will update Auth type in the store like this:

118 Next.js Cookbook

L N

export type Auth = {

isLoggedIn: boolean;
token: string | 5
userProperties: Array<string>

Figure 5.21: Update the store type to fit the requirements

Do not forget to update the initial store as listed in Figure 5.22:

o000

export const INITIAL_STATE: AuthState
auth: {
isLoggedIn:
token: R
userProperties: []
}’
s

Figure 5.22: Initial store update

To use the state of the login we need to do changes in the login service to make the
state return from the method. Check Figure 5.23 for the solution:

o @
async login(user: string, password: string) {
const loginContext = new LoginContext(loginType);
const loginState = await loginContext.uselLogin(user, password)
this.isLoggedIn = loginState.isLoggedIn;
this.applicationUser = new ApplicationUser(loginState)
loginState.userProperties.forEach((property: keyof typeof UserBi lerMethods) => {
UserBuilderMethods[property] && this.applicationUser[UserBuilderMethods[property]]()
19
this.token = loginState.token;
return loginState;
}

Figure 5.23: Updated login method in the service

Using state management in Next]S 119

Now, we can open the login form file and update the loginAction function to get the
state of the login after the method is triggered. As the login method is async we need
to change the loginAction type to async listed here:

const loginAction = async (event: any) => {
console. log('login');

event.preventDefault();
const loginState = await loginService.login(login, password);
console.log('loginState', loginState)

Figure 5.24: Form login method update

After that, we will need to add a dispatch call to change the state. To do it open the
login form file and add this as shown in Figure 5.25:

import { useAppDispatch } from
import { changeAuthState } from "../../pages/store/authSlice";

../../pages/hooks"

Figure 5.25: Functions required to proceed

Now, the loginAction function can dispatch the state and provide it in the action
like this:

L NN
const dispatch = useAppDispatch();

const loginAction = async (event: FormEvent<HTMLFormElement>) => {
console.log('login');
event.preventDefault();
const loginState = await loginService.login(login, password);
1tch(changeAuthState(loginState));
sole.log('loginState', loginState);

Figure 5.26: Updated loginAction function

120 Next.js Cookbook

Finally, when we will try to log in again in the login form we will see the changing
state history in the developer tools extension as shown in Figure 5.27:

State Action | State | Diff | Trace | Test

@EINIT
Tree Chart Raw
changeAuthstate

auth/changeAuthstate

auth/fchangeAuthState

Figure 5.27: State history in the Redux tools

Connecting data API to state management

In our architecture, we do not have direct API calls because we use configurable
strategies. But it is good news for us anyway. To connect API calls to the state
management we will need to use middleware as the best practice solution.

Please follow Figure 5.28 to update the store with middleware example:

const apiCallMiddleware = (store: RootState) =>
(next: Dispatch<RootState>) =>
(action: {type: string, payload : {save: boolean}}) => {
console.log("action", {store, action});
LoginService.getInstance().anyAPICall();
next(action);

12

export const store = configureStore({
middleware: (getDefaultMiddleware) =>
getDefaultMiddleware()
.concat(apiCallMiddleware),
reducer: {
[authSlice.name]: authSlice.reducer,
1
devTools: .

g

Figure 5.28: Update for the store/index.ts file

Using state management in Next]S 121

After this update, each action call will be wrapped with a middleware function. We
can filter actions and call different methods of service. As an example, we will add
code from Figure 5.29 to the login service.

anyAPICall() {
console.log('here we can call an API');

}

Figure 5.29: Dummy function to call it as an API call

After the page reloads we can try to log in again and that is what we will see in the
browser console:

36 trigger build

! action Pk {type: '

37 here we can call an API

Figure 5.30: Text in the console that we added to the service method

Now we can add as many API calls to the store as we want, depending on the action
name. We can also provide the payload in the middleware function parameters so
we could filter actions also by the payloads.

Conclusion

In this chapter, we learned how to connect the state management system to our
NextJS application. We managed to use Test Driven Development and also figured
out that for the API calls in the store we use the middleware instead a direct call from
the reducer.

In the next chapter, we will use all the collected knowledge to create more internal
pages for the application.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com
El

e
Elu

J

CHAPTER 6

Implementing

internal pages using
Next]S

Introduction

We did a great job in the previous chapters. But now it is time to step to the next
level and create the system that will allow us to develop and publish internal pages.
We will use all the knowledge that we get from before. For the exercise, we will
not touch GraphQL possibilities in this chapter and use simple data fetch. We will
do this because in the next chapters we will connect our application to the AWS
Amplify environment and this part will be redundant.

Structure
e Creating the publishing system for the food blog. Basics
e Mocking list of articles and article description page
o Creating mocks for internal pages
o Splitting internal pages into components
¢ Creating the application structure and router for application pages

¢ Creating atoms and molecules

124 Next.js Cookbook

e Creating the TDD flow for all coding structures
o Writing tests for page components
o Writing tests for store
o Writing tests for API
e Creating some API endpoints for the application
¢ Creating internal application pages
o Creating an article list page
o Creating an article item page
e Creating a CRUD system for articles
0 Separate public and private areas with NextJS
o Redux store for data state and edit
o Updating data in API

e Creating a multilingual tool for application in Next]S

Objectives

In this chapter, we will introduce how to start creating the publishing system from
the very beginning. We will follow the guidelines, that we used before for mocking
and test-driven development. Also, we will connect state management and API.
And in the end, we will add the possibility to create a multilanguage application
using Next]S.

Creating the publishing system for the
food blog

Before we start our creative journey, let us agree on some requirements that will be
used in the publishing system design:

e Each publication (we will call it an article) will be connected to one user.
e Each user can have an unlimited number of publications.

e Each publication will have a title, short description, text, and date of
publication. (In the real-life application we will also have some images but
to add this feature we will need an additional image server and so on. For
our example, we will have only these text fields)

Implementing internal pages using Next]S 125

e The application will have an articles list page where all articles will be shown
one by one unit, using the title, the description, and the publication date as
content.

e By clicking on each article block user will be directed to the article page
where he will see the article with the main text.

¢ To add the article to the navigation panel we will add the button to add the
article.

e All new articles will be sorted by the publishing date without any other
prioritization

e Ifwelogged in as an article owner then we will have the possibility to edit or
remove the article from the system. To add this functionality there should be
special buttons for this in the list for each article and also in the exact article.

Mocking - List of articles and article
description page

Now we have the requirement list we can start to create mocks for the pages. Let us
assume that some functional elements will be visible only after authorization (like
add, update, and delete buttons). We will separate each element using the atomic Ul
system as we did in previous chapters.

Until now, we do not store the state in the browser’s local storage or any other
storage. There are several different ways to solve this problem but it is out of the
scope of this book.

To not reset the auth data we will simply store it in the local storage and use it on the
application load. This way is not effective for a real-world production application.
Please use any persist library for it or use the database of the browsers.

Creating mocks for internal pages

We will start from the article list page. On this page, we need to have several
elements to the requirements. But as we have more than 1 page now we will add the
navigation layout. Also do not forget that there will be an element that will be shown
only after user authorization. Check Figure 6.1 to see the mock for the article list that
will be shown to the unauthorized user:

126 Next.js Cookbook

NextJS Cookbook

Homepage ‘ Articles ‘ About

Article title

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla ullamcorper bibendum sollicitudin.
Sed molestie non magna ut lobortis. Nunc pretium urna nec bibendum sagittis.
Cras neque massa, ultricies eget mollis ut, lacinia vitae velit. Suspendisse turpis neque,

111.2022

Article title

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla ullamcorper bibendum sollicitudin.
Sed molestie non magna ut lobortis. Nunc pretium urna nec bibendum sagittis.
Cras neque massa, ultricies eget mollis ut, lacinia vitae velit. Suspendisse turpis neque,

111.2022

Article title

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mulla ullamcorper bibendum sollicitudin.
Sed molestie non magna ut lobortis. Nunc pretium urna nec bibendum sagittis.
Cras neque massa, ultricies eget mollis ut, lacinia vitae velit. Suspendisse turpis neque,

11.2022

Figure 6.1: Articles list page for the unauthorized user

Please keep in mind that we do not have a logout function in our current system.
Because of that, we will just show the add article button after login. Please check
Figure 6.2 to see the article list after the user login.

NextJS Cookbook

Homepage ‘ Articles ‘ About

Article title

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla ullamcorper bibendum sollicitudin.
Sed molestie non magna ut lobortis. Nunc pretium urna nec bibendum sagittis.
Cras neque massa, ultricies eget mollis ut, lacinia vitae velit. Suspendisse turpis neque,

111.2022

HE

Article title

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla ullamcorper bibendum sollicitudin.
Sed molestie non magna ut lobortis. Nunc pretium urna nec bibendum sagittis.
Cras neque massa, ultricies eget mollis ut, lacinia vitae velit. Suspendisse turpis neque,

111.2022

§ E

Article title

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla ullamcorper bibendum sollicitudin.
Sed molestie non magna ut lobortis. Nunc pretium urna nec bibendum sagittis.
Cras neque massa, ultricies eget mollis ut, lacinia vitae velit. Suspendisse turpis neque,

111.2022

Figure 6.2: Articles list page for the authorized user

Implementing internal pages using Next]S 127

The whole article block will be clickable to enter the current article. That means
we will not need any other navigation elements. As you can see we have ‘Edit’
and ‘Delete’ buttons in the list. The same buttons will be duplicated on the current
article page. Please check Figure 6.3 to see how the current article page will look for
the unauthorized user.

NextJS Cookbook

Homepage ‘ Articles ‘ About

& Article title

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla ullamcorper bibendum sollicitudin.
Sed molestie non magna ut lobortis. Nunc pretium urna nec bibendum sagittis.

Cras neque massa, ultricies eget mollis ut, lacinia vitae velit. Suspendisse turpis neque,

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla ullamcorper bibendum sollicitudin.
Sed molestie non magna ut lobortis. Nunc pretium urna nec bibendum sagittis.

Cras neque massa, ultricies eget mollis ut, lacinia vitae velit. Suspendisse turpis neque,

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla ullamcorper bibendum sollicitudin.
Sed molestie non magna ut lobortis. Nunc pretium urna nec bibendum sagittis.
Cras neque massa, ultricies eget mollis ut, lacinia vitae velit. Suspendisse turpis neque,

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla ullamcorper bibendum sollicitudin.
Sed molestie non magna ut lobortis. Nunc pretium urna nec bibendum sagittis.

Cras neque massa, ultricies eget mollis ut, lacinia vitae velit. Suspendisse turpis neque,Lorem
ipsum dolor sit amet, consectetur adipiscing elit. Nulla ullamcorper bibendum sollicitudin.

Sed molestie non magna ut lobortis. Nunc pretium urna nec bibendum sagittis.

Cras neque massa, ultricies eget mollis ut, lacinia vitae velit. Suspendisse turpis neque,

11.2022

Figure 6.3: The article page for the unauthorized user

The same for the authorized user can be observed in Figure 6.4:

NextJS Cookbook

Homepage ‘ Articles ‘ About

& Article title

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla ullamcorper bibendum sollicitudin.
Sed molestie non magna ut lobortis. Nunc pretium urna nec bibendum sagittis.

Cras neque massa, ultricies eget mollis ut, lacinia vitae velit. Suspendisse turpis neque,

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mulla ullamcorper bibendum sollicitudin.
Sed molestie non magna ut lobortis. Nunc pretium urna nec bibendum sagittis.

Cras neque massa, ultricies eget mollis ut, lacinia vitae velit. Suspendisse turpis neque,

delete

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mulla ullamcorper bibendum sollicitudin.
Sed molestie non magna ut lobortis. Nunc pretium urna nec bibendum sagittis.
Cras neque massa, ultricies eget mollis ut, lacinia vitae velit. Suspendisse turpis neque,

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mulla ullamcorper bibendum sollicitudin.
Sed molestie non magna ut lobortis. Nunc pretium urna nec bibendum sagittis.

Cras neque massa, ultricies eget mollis ut, lacinia vitae velit. Suspendisse turpis neque,Lorem
ipsum dolor sit amet, consectetur adipiscing elit. Nulla ullamcorper bibendum sellicitudin.

Sed molestie non magna ut lobortis. Nunc pretium urna nec bibendum sagittis.

Cras neque massa, ultricies eget mollis ut, lacinia vitae velit. Suspendisse turpis neque,

111.2022

Figure 6.4: The article page for the authorized user

128 Next.js Cookbook

For the article edit, we will use a simple modal widow and form inside. You can see
the mock in Figure 6.5:

Edit article

Article (title)
Lorem ipsum (description)

Lorem ipsum (text)

Figure 6.5: Edit article modal window

Splitting internal pages into components

To follow the atomic design pattern we need to separate everything into elements.
Let us start with the articles list page to figure out what components we can create
from it. On this page, we see a navigation bar that contains several atoms and one

molecule there.

Articles

Homepage

Add article button
will mutate to Login butten
if user not authorized

Link to page atomns

Separator atoms

Navigation bar molecule

Figure 6.6: Navigation bar separated using Atomic pattern.

Implementing internal pages using Next]S 129

As you can see in Figure 6.6 we will need to create the link to the page atom that
will have visited state (bold font), the separator element between links. And also the
add article button. This button will have an unauthorized state and lead to the login
page. All these atoms will be wrapped by a navigation molecule that will have the
bottom border and contain all the elements for the page.

The next part is the articles list and which can be observed in Figure 6.7:

Article title——— Title atom

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mulla ullamcorper bibendum sollicitudin.
Sed molestie non magna ut lobortis. Nunc pretium urna nec bibendum sagittis.
Cras neque massa, ultricies eget mollis ut, lacinia vitae velit. Suspendisse turpis neque,

1nn.zozz2

Edit button afom
Description atom

Article element molecule Delete button atom
Publishing date atom

Figure 6.7: Article element molecule

As we can see we will need atoms for the title, description, and date. Also as the
buttons for edit and delete. The atomic way of separating will help us to reuse atomic
elements in other molecules. We can see it in Figure 6.8 for the exact article page.

Loremtgsum dolor sit amet;sgnsectetur adipiscing elit. Nulla ullamcorper bibendum sollicitudin. m_ Edit button atom
Sed molesije non magna ut lobdrdis. Nunc pretium urna nec bibendum sagittis.

Cras neque Mmassa, ultricies eget mdilis ut, lacinia vitae velit. Suspendisse turpis neque,

Lorem ipsum ddigr sit amet, consectetuiadipiscing elit. Nulla ullamcorper bibendum sollicitudin.

Sed molestie non fragna ut lobortis. Nunc pretjium urna nec bibendum sagittis. Delete button atom
Cras neque massa, uligicies eget mollis ut, lacinizyitae velit. Suspendisse turpis neque,

Lorem ipsum dolor sit amet;
Sed molestie non magna ut o
Cras neque massa, ultricies ege

onsectetur adipiscing elit. la ullamcerper bibendum sollicitudin.
rtis. Nunc pretium urna nec bihendum sagittis.

ollis ut, lacinia vitae velit. Suspepndisse turpis neque,

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla ullamcorperbibendum sollicitudin.
Sed molestie non magna ut lobortis. Nunépretium urna nec bibendum sagitt
Cras neque massa, ultricies eget mollis ut, I3inia vitae velit. Suspendisse turpis ue Lorem
ipsum dolor sit amet, consectetur adipiscing elit, Nulla ullamcorper bibendum sollicitidip.
Sed molestie non magna ut lobortis. Nunc pretiumiyrna nec bibendum sagittis.
Cras neque massa, ultricies eget mollis,ut, lacinia vitae_velit. Suspendisse turpis negue,
Title atom

11.11.202 Back to articles list atom
Article text atom

Publishing date atom

Figure 6.8: Exact article molecule

130 Next.js Cookbook

As you can see we can use the title, date, and buttons from the atomic system that we
will create for the articles page. That will improve the maintainability of the system
in the future and also reduce the number of code lines of the application.

Finally, we can point out several components for the edit modal that you can see in
Figure 6.9.

Close modal atom

Edit article——— Modal overlay atom

Article (title)

Lorem ipsum (description) Edit modal molecule

Lorem ipsum (ta

Save button atom

Article title atom

Article description atom .
p Article textarea atom

Figure 6.9: Edit modal atoms

We made a great job here and have a full list of required components that we could
wrap with tests and make ready for production.

Creating the application structure for
application pages

The next step in our process will be creating the files for the Ul system. In Figure 6.10
we can observe the result of previous research. We will create all required files in the
UI folder.

Implementing internal pages using Next]S 131

SubmitButton.tsx

TextInput.tsx

Figure 6.10: Ul folder file structure after the Atomic research.

As in Next]S, the routing system is based on files we will need also to update the file
structure to work with article pages like the following figure:
pages
> api

v artic

[pid].page.tsx

Figure 6.11: Article pages structure update

Before we start implementing the UI we need to add some features to the system. As
you remember we will use a simple store for the auth state. To add it let us do some
changes in several files.

132 Next.js Cookbook

Add a file with the name local-storage.ts in the pages/ core folder. Put code from
Figure 6.12 into this file.

const updateStorage = (key: string, data: string) => {
localStorage.setItem(key, data);
}

const getFromStorageByKey = (key: string, param?: string) => {
if (!param) {
return localStorage.getItem(key);
)

const storageToJSON = JSON.parse(localStorage.getItem(key) as string);
return typeof storageToJSON === 'object' && storageTo]SON[param];
iy

export { updateStorage, getFromStorageByKey };

Figure 6.12: Core file to work with local storage

Next step we will need to call the updateStorage function when we will have the

user data from the APL. Make the login service function login same as presented in
Figure 6.13:

async login(user: string, password: string) {

const loginContext = new LoginContext(loginType);

const loginState = await loginContext.uselLogin(user, password)

this.isLoggedIn = loginState.isLoggedIn;

this.applicationUser = new ApplicationUser(loginState)

loginState.userProperties.forEach((property: keyof typeof
UserBuilderMethods) => {

UserBuilderMethods[property] &&

this.applicationUser[UserBuilderMethods|[property]l]()

1)

this.token = loginState.token;

/* Remarkabouty LocalStorageKeys.LOGIN: do not forget to create the
enum with keys in core configuration and put value 'loginState' (or any
that you prefer) for the key LOGIN */

updateStorage(LocalStorageKeys.LOGIN, JSON.stringify(loginState))
return loginState;

Figure 6.13: Updated login service

Implementing internal pages using Next]S 133

And now the main component file _app.page.tsx should be updated with the
following code:

function CookBook({ Component , pageProps }: AppProps) {
const { store } = wrapper.useWrappedStore(pageProps);

useEffect(() => {
const authFromStorage = getFromStorageByKey(LocalStorageKeys.LOGIN)
if (authFromStorage) {
store.dispatch(changeAuthState(authFromStorage));

}
}, [store])

return (
<Provider store={store}>
<Layout>
<Component {...pageProps} />
</Layout>
</Provider>
)
i

Figure 6.14: Main component update

Now each time we do reload the page the login state is not gone anyway and always
exists in the application store as shown in Figure 6.15:

NextJS. Cookbook

Hello there ! This is the main page of CookBook

About

2022. All rights reserved

Figure 6.15: Auth state exists if we manually route to the main page

Creating atoms and molecules

We will start with more extensive parts and move to smaller parts so from molecules
to atoms. We will have a lot of elements that look and act pretty much the same so
we will put into text only more or less unique ones to have less identical code in the
text (for example we have several buttons, and the only difference is the label and
callback function). A good practice is to reduce the amount of the same code in your
codebase so we will try to follow this guide as possible.

134 Next.js Cookbook

Atoms

We will use Figure 6.10 as a list of required components that should be created. For
now, we will leave everything as abstract as possible without any concrete solution
to keep this example more focused on the process rather than on some amazing
result.

For the styles please create the file with the name Atoms.module.scss in the styles
folder.

The button for adding articles can be observed in Figure 6.16:

L NN
/* Please update your ui-types.d.ts with this interface
interface IAddArticleButton {
openModal: () => void
}
*/

import { useEffect, useState } from "react";

import { useAppSelector } from "../../pages/hooks";

import { Labels, LocalStorageKeys } from "../../pages/core/configs"
import { selectAuthState } from "../../pages/store/authSlice";
import styles from '../../styles/Atoms.module.scss';

const AddArticleButton = ({ openModal }: IAddArticleButton) => {
const [buttonLabel, setButtonState] = useState(Labels.SUBMIT);
const isLoggedIn = useAppSelector(selectAuthState);

useEffect(() = {
if (isLoggedIn) {
setButtonState(Labels.ADD_ARTICLE);
}
dispatch(changeArticleState(newArticle));
}, [isLoggedIn]);
return (
<button
className={styles.blueButton}
type="button"
onClick={ () => openModal() }
>{!isLoggedIn ? Labels.SUBMIT : Labels.ADD_ARTICLE}</button>

I

export default AddArticleButton;

Figure 6.16: Add article button with mutable label

Implementing internal pages using Next]S

135

Please also add the styles for this component as in Figure 6.17:

@import 'colors';
.blueButton {

background-color: $ 2
padding: 1lrem;

border: ;

border-bottom: 3px $gray;
cursor: :

transition: 0.1s;

margin: 0.2rem;

position: .

&:active {
border-bottom: 1px $gray;
margin-bottom: 0.3rem;
bottom: -2px;

Figure 6.17: Styles for the button

The dates will use this code for the display:

import styles from '../../styles/Atoms.module.scss';

const ArticleDate = ({ date }: IDate) => {
return (
{date}
)
¥

export default ArticleDate;

Figure 6.18: Dates component

136 Next.js Cookbook

.dates {
color: $gray;
font-size: 0.8em;

Figure 6.19: Styles for the dates component

The article title, description, and text will be combined with editing elements to have

a group inside of the atom that is solving one task depending on the state that will
contain a flag if we edit the element or not.

For the article title component use code from Figure 6.20. As you can see we separate

the view for not authorized and authorized users. We will add a store for these
components later.

import { useState } from 'react’';

import { useSelector } from 'react-redux';

import { selectAuthState } from '../../pages/store/authSlice';
import styles from '../../styles/Atoms.module.scss';

const ArticleTitle = ({ title, isEdit }: { title: string, isEdit: boolean})
= {

const [value, setValue] = useState(title)

const onChangeHandler = (event: Partial<any>) => {
const value = event.target.value;
setValue(value);

)
return (
<div className={styles.input}>
{!isEdit &&
{title}
}
{isEdit &&
<input onChange={onChangeHandler} type="text" value=
{value}/>
}
</div>

}

export default ArticleTitle;

Figure 6.20: Article title component

Implementing internal pages using Next]S 137

Add this style to the styles file.

L NON
.input {
span {

color: $gray;
font-size: lem;

}

input {
color: $gray;
font-size: lem;
padding: 0.5rem;
width: 100%;

)

Figure 6.21: Styles for the input element

The article description is the same as the title in our example, so you can just copy

and paste the whole code. Do not forget to rename the component and properties
like the following figure:

o0®
const ArticleDescription = ({ description, isEdit }: { description: string,

isEdit: boolean }) => {

}

export default ArticleDescription;

Figure 6.22: Article description component

138 Next.js Cookbook

Article text is using textarea as an input like the following figure:

import { useState } from 'react';

import { useSelector } from 'react-redux';

import { selectAuthState } from '../../pages/store/authSlice';
import styles from '../../styles/Atoms.module.scss';

const ArticleText = ({ text, iskEdit }: { text: string, iskEdit: boolean}) =>
{

const [value, setValue] = useState(text)

const onChangeHandler = (event: Partial<any>) => {
const value = event.target.value;
setValue(value);
I
return (
<div className={styles.input}>
{!isEdit &&
{text}
)
{isEdit &&

<textarea onChange={onChangeHandler} value={value}>
</textarea>

b
</div>

2

export default ArticleText;

Figure 6.23: Article text component

Do not forget about styles and add this style input to your input class like the
following figure:

.input {

textarea {
color: $gray;
width: 100%;
font-size: lem;
padding: 0.5rem;
width: 100%;
height: 5rem;

Figure 6.24: Textarea styles to insert into .input class

Implementing internal pages using Next]S

139

Let us move forward and create the close modal button like the following figure:

[XN)
import styles from '../../styles/Atoms.module.scss';

const ArticleModalCloseButton = ({ closeModal }: { closeModal: () => void }) => {
return (

)
)

export default ArticleModalCloseButton;

<button className={styles.close} type="button" onClick={ () => closeModal() }>X</button>

Figure 6.25: Close button component

Update the styles file with the class to add some styles to the button as shown in

Figure 6.26:

.close {
line-height: 1;
background: 3
border: 2
font-size: 1.2em;
cursor: g
transition: 0.1s;

&:active {
font-weight: ;
}

Figure 6.26: Close button class in styles file

The back-to-list button will look like this:

import styles from '../../styles/Atoms.module.scss’;
const BackToListButton = ({ backToList }: { backToList: () => void }) => {
return (
<button className={styles.back} type="button" onClick={backToList}>—</butto
)
}

export default BackTolListButton;

n=>

Figure 6.27: Back to list button

140 Next.js Cookbook

The styles for this button shown in Figure 6.28:

L AN

.back {
background: s
border: Z

font-size: 2em;
transition: 0.5s;
cursor: 5

&:active {
font-size: 3em;

3

Figure 6.28: Style class for the back-to-list button

The delete article button will look like this:

import { Labels, LocalStorageKeys } from "../../pages/core/configs"
import styles from '../../styles/Atoms.module.scss';

const DeleteArticleButton = ({ deleteArticle }: IArticleActions) => {
return (
<button
className={styles.deleteButton}
type="button"
onClick={ () => deleteArticle?.() }
>{Labels.DELETE}</button>

¥

export default DeleteArticleB-itton;

Figure 6.29: Edit article button

Implementing internal pages using Next]S 141

Styles for this button will be also short like this:

.deleteButton {
@extend .blueButton;
color: $white;
background-color: $red;
padding: 0.5rem lrem;

Figure 6.30: Style class for delete article button

The edit button will be the same but with a different name of components and style
as shown in Figure 6.31:

const EditArticleButton = ({ editArticle }: IArticleActions) => {

H

export default EditArticleButton;

Figure 6.31: Edit article button component

For style, we will extend the delete button but change the color. Now both buttons
are the same with only one difference as shown in Figure 6.32:

.editButton {
@extend .deleteButton;
background-color: $green;

Figure 6.32: Style for edit article class

142 Next.js Cookbook

We also have a separator between links in navigation:

import styles from '../../styles/Atoms.module.scss’;
const Separator = () => {

return (

<div className={styles.separator}></div>
)
I

export default Separator;

Figure 6.33: Separator component

The styles class for this component will look like this:

L NN

.separator {
border-right: 1px $gray;
width: 1px;

height: 2.5rem;

Figure 6.34: Separator component style class

The last component in the list will be the navigation link and the code is in Figure
6.35:

import Link from "next/link";
import styles from '../../styles/Atoms.module.scss';

const LintToPage = ({ title, link }: {title
return (
<Link
className={styles.link}
href={1link}>
{title}

: string, link: string}) => {

</Link>
I

export default LintToPage;

Figure 6.35: Link to the page component

Implementing internal pages using Next]S 143

Styles for this component are in Figure 6.36:

.link {
font-size: lem;
color: $gray;

Figure 6.36: Style class for the link to the page component

Molecules

The navigation bar will contain the code from Figure 6.37:

import styles from
import LinkToPage from
import Separator from

../../styles/Atoms.module.scss';
'../atoms/LinkToPage';
'../atoms/Separator’;
const NavigationBar = ({ navigation } : INavigationParams) => {
return (
<nav className={styles.nav}>
{
navigation?.map((navElement: INavigation) => {
return (
<div>
<LinkToPage
title={navElement.title}
link={navElement.link}
/>
<Separator />
</div>
)

</nav>

}

export default NavigationBar;

Figure 6.37: Navigation bar component

144 Next.js Cookbook

Styles for this component are listed in Figure 6.38:

.nav {
display: flex;
align-items:
div {
display: X
align-items:
padding: 1lrem;

i

div:last-child .separator {
display: none;
}

Figure 6.38: Style class from the navigation

For the article item in the list use the code listed in Figure 6.39:

(XN J

import Link from 'next/link';

import styles from '../../styles/Atoms.module.scss';

import ArticleDate from '../atoms/ArticleDate';

import ArticleDescription from '../atoms/ArticleDescription’;
import ArticleTitle from '../atoms/ArticleTitle';

import DeleteArticleButton from '../atoms/DeleteArticle’;

import EditArticleButton from '../atoms/EditArticle’;

const ArticleListElement = ({ article, isLoggedIn } : {article : IArticle, isLoggedIn: boolean }) =>
{ return (
<section className={styles.articleListElement}>
<Link href={"/articles/${article.id} '} className={styles.linkToDiv}>
<div><ArticleTitle isEdit={false} title={article.title} /></div>
<div><ArticleDescription isEdit={false} description={article.description} /></div>
<div><ArticleDate date={article.publishingDate}/></div>
</Link>

{isLoggedIn &&
<div>
<div>
<EditArticleButton editArticle={() => {}} />

</div>
<div>
<DeleteArticleButton deleteArticle={() => {}} />

</div>
</div>
}

</section>

¥

export default ArticleListElement;

Figure 6.39: Article list item component code

Implementing internal pages using Next]S [145

Add these styles to the atomic styles file:

o000

.articleListElement {
display: flex;
align-items: center;
border: 1px solid;
justify-content: space-between;
padding: 0.5rem;

1

.linkToDiv {
display: block;
width: 100%;

}

Figure 6.40: Styles for the article list item component

Now we need to do updates in the Edit button component and add a modal there.
Please collect the updated code in Figure 6.41:

import { useState } from "react";

import { Labels, LocalStorageKeys } from "../../pages/core/configs"
import styles from '../../styles/Atoms.module.scss';

import ArticleEdit from "../molecules/ArticleEdit";

import ArticleDescription from "./ArticleDescription”;

import ArticleModalCloseButton from "./ArticleModalCloseButton";
import ArticleModalSaveButton from "./ArticleModalSaveButton";
import ArticleText from "./ArticleText";

import ArticleTitle from "./ArticleTitle";

const EditArticleButton = ({ editArticle, article }: { editArticle: ()=> void, article: IArticle}) => {
const [showModal, setModalState] = useState(false);
return (
<>
<button
className={styles.editButton}
type="button"
onClick={ () => setModalState(true) }
>
{Labels.EDIT}
</button>
{showModal &&
<div id="edit" className={styles.modal}>
<div className={styles.modalContent}>
<div className={styles.modalContent__first}>
<ArticleEdit isEdit={true} article={article} editArticle={editArticle} />

</div>
<div>
<ArticleModalCloseButton closeModal={ () => setModalState(false) } />
</div>
</div>
</div>
}
</>

}

export default EditArticleButton;

Figure 6.41: Updated code for the Edit button

146 Next.js Cookbook

Please also add the following code to the styles:

.modal {
display: block;
position: fixed;
z-index: 1;
left: O;
top: 0;
width: 100%;
height: 100%;
overflow: auto;
background-color: $black;
background-color: rgba(0,0,0,0.4);
¥

.modalContent {
background-color: $white;
margin: 15% auto;
padding: 20px;
border: 1px solid $gray;
width: 80%;
display: flex;
justify-content: space-between;
& first {

width: 100%;
div {
margin-bottom: lrem;

}

Figure 6.42: The styles classes for the modal window

Implementing internal pages using Next]S 147

The last molecule is the Article Edit component. Code can be collected in Figure
6.43:

import ArticleDescription from '../atoms/ArticleDescription’;

import ArticleModalSaveButton from '../atoms/ArticleModalSaveButton';
import ArticleText from '../atoms/ArticleText';

import ArticleTitle from '../atoms/ArticleTitle’;

const ArticleEdit = ({ article, isEdit, editArticle }: IArticelEdit) => {

return (
<>
<ArticleTitle title={article.title} isEdit={ } />
<ArticleDescription description={article.description} isEdit={ } />

<ArticleText text={article.text} isEdit={ =2} />
<ArticleModalSaveButton saveArticle={editArticle} />
</>

}

export default ArticleEdit;

Figure 6.43: Article edit component

Creating the TDD flow for all coding
structures

The guidelines from the previous chapters are leading us to create tests first. We will
plan to cover article pages with short tests before we start creating the page then
cover the store and in the end, cover the API endpoints (for the last one we will do
some smoke tests as we do not need the full possibilities of the API in this chapter
because it’s out of scope).

148 Next.js Cookbook

Writing tests for page components

Because we do not have many elements on the page that appear without data

we will need to test only that component is rendered well as we did it before.
(Figure 6.44)

import React from 'react’

import { screen } from '@testing-library/react’
import { renderWithProviders } from '../utils'
import ListPage from '../pages/articles/list.page'

describe('List Articles', () => {
it('renders a list page', () => {
renderWithProviders(<ListPage />)

const heading = screen.getByRole('heading', {
name: /Articles list/1,

});

expect(heading).toBeInTheDocument();
b
H)s

Figure 6.44: Render test for list articles page

Please add the code provided in Figure 6.45 to add a test for the exact article page:

describe('Articles', () == {

it('renders an article page', () => {
renderWithProviders(<ArticlePage />)

const heading = screen.getByRole('button', {name: 'back to
list'});
expect(heading).toBeInTheDocument();
})

})

Figure 6.45: Exact article page test

Implementing internal pages using Next]S 149

Writing tests for store

By design, we do not have any dynamic components on the pages. To have an
example, let us add the test for the selected article here. We will add it in the future.

)5
J)g
1)

[IO N

import articleSlice, {
changeArticleState,
INITIAL_STATE,
ArticleState

} from '../articleSlice';

describe("Article Slice", () => {
describe("Article check function", () => {
it("should change artile in store", () => {
const state: ArticleState = {

isNew:

const action = changeArticleState(state);

const expectedResult: ArticleState = state;

const actualResult = articleSlice.reducer(INITIAL_STATE, action);
expect(actualResult).toEqual(expectedResult);

Figure 6.46: Article’s state test

Leave it for now. We will come back to it in the future.

Writing tests for API

Please note that we will not create any functions for the API calls and in this section
will call the data directly from the mock using the API possibilities of Next]S. That
means that in this block we will skip the API test but come back to it in the E2E
section of the book.

Creating some API endpoints for the
application

To add the API endpoints we will need to add some folder structures as you can see

in Figure 6.47:

Figure 6.47: Articles file structure

150 Next.js Cookbook

For the article list we will use an index file with this code:

import type { NextApiRequest, NextApiResponse } from
exk:
import { getMock } from "../../mocks";

export default function handler(
req: NextApiRequest,
res: NextApiResponse<any>
) {
res.status(200). json(getMock.new_articles);

}

Figure 6.48: Articles list endpoint

For the exact article, we will use [pid].api.ts file with the following code inside:

import type { NextApiRequest, NextApiResponse } from
‘next’
import { getMock } from "../../mocks";

export default function handler(
req: NextApiRequest,
res: NextApiResponse<any>
) {
const { pid } = req.query
res.status(200).json(getMock.new_articles[Number(pid)]);

b

Figure 6.49: Exact article endpoint file

Creating internal application pages

We are ready to create the pages as we have made all possible preparations before
we do a soft start. We have all the required tests and all required API endpoints.

Creating an article list page

To add the codebase to this page we need to do the update for the general view and
add the navigation bar to it. Update the navigation bar component using the code
from Figure 6.50:

Implementing internal pages using Next]S

151

import { useRouter } from 'next/router';

import styles from '../../styles/Atoms.module.scss';
import AddArticleButton from '../atoms/AddArticle';
import LinkToPage from '../atoms/LinkToPage';

import Separator from '../atoms/Separator';

const NavigationBar = ({ navigation } : {navigation : Array<INavigation>}) => {
const router = useRouter();
return (
<nav className={styles.nav}>
<div>
{navigation && navigation.map((navElement: INavigation) => {
return (<div key={navElement.link} className={'${router.asPath === navElement.link ?
styles.active : ""}'}>
<LinkToPage
title={navElement.title}
link={navElement.link}
/>
<Separator />
</div>)
H}
</div>
<div>
<AddArticleButton openModal={ () => {} } />
</div>
</nav>

}

export default NavigationBar

Figure 6.50: Updated navigation barcode

Then please update the layout.tsx file with code that you will find in Figure 6.51:

import styles from '../../styles/layout.module.scss'
import NavigationBar from '../../uil/molecules/NavigationBar'

export default function Layout({ children } : Partial<any>) {
const navigation = [
{title: 'Home', link: '/'},
{title: 'Articles', link: '/articles'},
{title: 'About', link: '/about'}

1
return (
<>
<header className={styles.header}>Next]S. Cookbook</header>
<nav>
<NavigationBar navigation={navigation} />
</nav>
<main>{children}</main>
<footer className={styles.footer}>2022. All rights
reserveds/footer>
)

)

Figure 6.51: Updated layout file

152 Next.js Cookbook

Now we are ready to implement the list page using the code from Figure 6.52:

import type { NextPage } from 'next’

import ArticleListElement from '../../ui/molecules/ArticlelListElement’;
import { Fragment } from 'react’;

import { selectAuthState } from '../store/authSlice';

import { useAppSelector } from '../hooks';

const ListPage: NextPage = ({ data, notFound }: IListPage) => {
const isLoggedIn = useAppSelector(selectAuthState);

return (
<section>
<hl>Articles list</hl>
{
data?.map((item: any) => {
return <Fragment key={item.id}>
<ArticleListElement

isLoggedIn={isLoggedIn}
article={item}

=
</Fragment>

})
}
{

notFound && No articles found
}

</section>

)
¥

export default ListPage

Figure 6.52: Component code without data fetching

Implementing internal pages using Next]S

153

To fetch the data add the following code to your component:

export async function getServerSideProps() {

try {

const { data } = await axios.get<any>(

'http://localhost:3005/api/articles’
)5
if (!data) {

return {
props: { notFound: },
b
}
return {
props: { data },
1
} catch (error) {
return {
props: { notFound: },
ks
}
18

export default ListPage

Figure 6.53: Get server-side props function for the component

Create an article item page

Now we can create the article page using the same pattern that we used in the list
page. Please collect the full code of the internal article page from Figure 6.54:

154 ™ Next.js Cookbook

import axios from 'axios'

import type { NextPage } from 'next'

import { useSelector } from 'react-redux'

import ArticleDate from '../../ui/atoms/ArticleDate’
import ArticleText from '../../ui/atoms/ArticleText'
import ArticleTitle from '../../ui/atoms/ArticleTitle’
import DeleteArticleButton from '../../ui/atoms/DeleteArticle
import EditArticleButton from '../../ui/atoms/EditArticle
import { selectAuthState } from '../store/authSlice'
import styles from '../../styles/Articles.module.scss';
import BackToListButton from '../../ui/atoms/BackToList'
import { useRouter } from 'next/router

const ArticlePage: NextPage = ({ data, notFound }: any) => {
const isLoggedIn = useSelector(selectAuthState);
const router = useRouter();
const routeBack = () => {
router.push('/articles');

I
return (
<section className={styles.section}>
<div>
<div className={styles.title}>
<BackToListButton backToList={ () => routeBack()} />
<hl>
<ArticleTitle title={data.title} isEdit={false} />
</h1>
</div>
<p>
<ArticleText text={data.text} iskdit={false} />
</p>
<div>
<ArticleDate date={data.publishingDate} />
</div>
</div>
{isLoggedIn && <div>
<div>
<EditArticleButton article={data} editArticle={() => {}} />
 </div>
<div>
<DeleteArticleButton deleteArticle={() => {}} />

</div>
</div> }
</section>

)
}

export async function getServerSideProps(context) {
const { pid } = context.query;
console.log(context);
try {
// This part can be changed to service
const { data } = await axios.get<any>(
'http://localhost:3005/api/articles/"' + pid

);
if (ldata) {

return {
props: { notFound: true },
I H
B
return {

props: { data },

} catch (error) {
return {
props: { notFound: true },
5
t
hH

export default ArticlePage

Figure 6.54: Exact article page component code

Implementing internal pages using Next]S 155

Please also create the Article.module.scss file with these styles.(Figure 6.55)

L NN
.section {
display: flex;
justify-content: space-between;
}
.title {
display: flex;
}

Figure 6.55: Styles for the exact article

Now when you visit the articles page you should see the following figure:

<« C @ localhost

=

= » YouTube JA Maps

NextJS. Cookbook

Home ‘ Articles ‘ About + add article

Articles list

test title
test description
11.11.2022 delete

new test title
new test description
12.11.2022 delete

2022. All rights reserved
Figure 6.56: Articles list page

After all manipulations if you make click on any article title you should be followed
to the page that will look like in Figure 6.57:

156 Next.js Cookbook

& C ® localhost

S Gmail > YouTube A Maps

NextJS. Cookbook

Home ‘ Articles ‘ About +add article

+— test title

est text

1.11.2022

2022. All rights reserved

Figure 6.57: Exact article page

If we will not be logged in it will hide the action buttons and show the login button
in the navigation.

Creating a CRUD system for articles

It is time to bring some life to our application. We can see the list of articles and
also can enter each one. But we also need to have the possibility to have a UI for the
create and update actions.

Separate public and private areas with NextJS

To check if we have a strong separation let us remove everything from the localStorage
of the browser and reload the page. After that please visit the articles page (should be
something like http://localhost:3005/articles this link). Now to have a short problem
- the Login button is not active so we cannot get into the private area. To fix it we
need to add a small update to this button:

return (
<>
{isLoggedIn &&
<button
className={styles.blueButton}
type="button"
onClick={ () => openModal() }
>{Labels.ADD_ARTICLE}</button>
}
{!isLoggedIn && <Link className={styles.blueButton} href={"/login"}>{Labels.SUBMIT}</Link>}

</>

Figure 6.58: Update for the AddArticle component

Implementing internal pages using Next]S 157

Update the code in the AddArticle.tsx file using provided code from Figure 6.58.
After that, if you click this button you will be directed to the login form page.

Let us also structure the styles a little to make the login page look like the other
pages. Please add these styles to LoginForm.module.scss:

.LoginForm {
max-width: 50%;
margin: 0@ :
input {
width: 100%;
padding: 0.5rem;
margin-bottom: 1lrem;

}
button {

padding: lrem;
g

Figure 6.59: Update for the login page styles

Please also update the login page render part as provided in Figure 6.60:

® @
return (
<article className="content">
<hl>Login</h1l>
<LoginForm />
</article>
)

Figure 6.60: Updated render part for the login page

158 Next.js Cookbook

After that you will see that the page looks a little bit better than before:

D localhost

6 Gmal > YouTube [Maps

NextJS. Cookb

ook

Home ‘ Articles

Login

| s

Login

2022, All rights reserved

But we still have the lack of the process here as after the login nothing is happening.
To fix it let us route to the articles page after we successfully logged in. To achieve it
we will update the LoginForm component with route. push after the successful login

like in Figure 6.62:

Figure 6.61: Small improvement for the login page

const LoginForm = () => {
const router = useRouter();
const loginAction = async (event: any) => {

if (loginState.isLoggedIn) {
router.push('/articles')};
}

~ode as i1

same coae as 1l

Now after we do successfully login into the system we will be redirected to the

articles page.

Figure 6.62: Update for the login form component

Redux store for data state and edit

As you remember we are having the state test for the article that still not exists. Let

us change the situation and create the slice for it like in Figure 6.63:

Implementing internal pages using Next]S

159

import { createSlice, PayloadAction } from "@reduxjs/toolkit";
import { RootState } from ".";

export type ArticleState = {
id: number
title: string
description: string
text: string
publishingDate: string
isNew: boolean

Is

export const INITIAL_STATE: ArticleState = {
id: 0.
Eitles **,
description: "',
Texda it
publishingDate: '',
isNew:

I

const articleSlice = createSlice({
name: "article",
reducers: {
changeArticleState: (state: RootState, action: PayloadAction<ArticleState>) => {
const newArticleState = action.payload;
state = {...newArticleState };
return state;
}
}!
initialState: INITIAL_STATE,
F5

export const selectArticleState = (state: RootState) => {
return state.article;

}
export const { changeArticleState } = articleSlice.actions;
export default articleSlice;

Figure 6.63: Article state slice

Now in the VS Code if we open the article slice test file we will see that all tests are

passed and have a green indicator like in Figure 6.64:

Rl |
describe("Article Slice",

1N

Figure 6.64: Tests for the article slice

160 Next.js Cookbook

Now we can add some functionality to the add article button as we still do not have
amodal for it. Use this code to update the add article button to have the modal in it:

import Link from "next/link";

import { useEffect, useState } from "react";

import { Labels } from "../../pages/core/configs"

import { useAppDispatch, useAppSelector } from "../../pages/hooks";
import { changeArticleState } from "../../pages/store/articleSlice";
import { selectAuthState } from "../../pages/store/authSlice";
import styles from '../../styles/Atoms.module.scss';

import ArticleEdit from "../molecules/ArticleEdit";

import ArticleModalCloseButton from "./ArticleModalCloseButton";

const AddArticleButton = ({ openModal }: IAddArticleButton) => {
const [buttonLabel, setButtonState] = useState(Labels.SUBMIT);
const [showModal, setModalState] = useState(false);
const isLoggedIn = useAppSelector(selectAuthState);
const dispatch = useAppDispatch();
const newArticle = {

id: -1,

title: '',
description: '',
texts 'Y,
publishingDate: '',
isNew: true

15

const saveData = (data: IArticle) => {
console.log('data to save', data)

}

useEffect(() => {
if (isLoggedIn) {
setButtonState(Labels.ADD_ARTICLE);
}
dispatch(changeArticleState(newArticle));
}, [newArticle]);
return (
<>
{isLoggedIn &&

<button
className={styles.blueButton}
type="button"
onClick={ () => setModalState(true) }
>{Labels.ADD_ARTICLE}</button>
}

{showModal &&
<div id="edit" className={styles.modal}>
<div className={styles.modalContent}>
<div className={styles.modalContent__first}>
<ArticleEdit isEdit={true} article={newArticle} editArticle={saveData} />
</div>
<div>
<ArticleModalCloseButton closeModal={ () => setModalState(false) } />
</div>
</div>
</div>

l
{!isLoggedIn && <Link className={styles.blueButton} href={"/login"}>{Labels.SUBMIT}</Link>}
</

}

export default AddArticleButton;

Figure 6.65: Updated article add button component

Implementing internal pages using Next]S 161

Updating data in API

We have enough interactivity for the internal pages so we can try to send some data
into the API. We will also do it directly in this lesson. To create the payload for the
action we need to store it somewhere. As you remember we store the current article
data in the store. We can use it for sending data into an API to save the data.

Please update your inputs with the code provided in Figure 6.66:

[XN
const ArticleTitle = ({ title, iskEdit }: { title: string, isEdit: boolean}) =>
{ :
const currentArticle = useSelector(selectArticleState);
const dispatch = useAppDispatch();
const onChangeHandler = (event: Partial<any>) => {
dispatch(changeArticleState({...currentArticle, title: value}));
Js
}

export default ArticleTitle;

Figure 6.66: The code for input update

Use the same code for description and text components with only property changes
depending on the component name.

Now we need to add action to the save button. As you remember we are using
middleware in this example so any change in the store will be wrapped with an API
call. For the save button we just need to create the store update event and moderate
the action and payload.

const EditArticleButton = ({ editArticle, article }: { editArticle: ()=> void, article: ArticleState}) => {

same yde

const saveArticle = async () => {
dispatch(changeArticleState({...article, save: e}));

J;

return (

<ArticleEdit isEdit={true} article={article} editArticle={saveArticle} />

ame code

Figure 6.67: Update for the edit article button

162 Next.js Cookbook

In the EditArticleButton component we need to make an update and put the
function of store change into the ArticleEdit component like in Figure 6.67. Now
each time we press the Save button store will be updated. We need to operate this
event in the index file like this:

000
const apiCallMiddleware = (store: any) => (next: any) => (action: any) => {
let data = s
if (action.type === 'article/changeArticleState' && action.payload.save)
{ data = action.payload
¥

LoginService.getInstance().anyAPICall(data);

Figure 6.68: Update of the API call event

Now when we press the save button we will see that API was called with payload
data inside like this:

action P {store: {._}, action: {.}}

here we can call an API

description:
id: 123

publishingDate: "11.11.2022"

Figure 6.69: API call in the browser console

Creating a multilingual tool for application
in Next]S

To add the multi-language possibility to the application we will need the library that
called React Intl. Use the following code to add the library to the application:

000
npm i react-intl

yarn add react-

intl

Figure 6.70: Commands to add the Intl library to the project

Implementing internal pages using Next]S 163

Next, in the root level of the application we will need the folder called “lang” with
files that will contain the language translations like this:

Figure 6.71: Folder with translations in the application root

Put this data inside each file depending on the name:

XN
{

"page.home.head.title": "Kochbuch in Deutsch"
)
{

"page.home.head.title": "Cookbook in English"
}

Figure 6.72: Translation strings in the JSON files

After that, we will need to add configuration to the Next]S. Please add the following
code to your Next]S configuration and restart the dev server:

| NN
const nextConfig = {

i118n: {
locales: ['en', 'de'l],
defaultLocale: 'en'

}s

2

}

module.exports = nextConfig

Figure 6.73: Updated configuration code for Next]S

164 Next.js Cookbook

Next, step is to wrap the application with a language detection container. Please
update your __app.page.tsx file with the following code:

000

// S code

import de from "../lang/de.json";
import en from "../lang/en.json";

import { IntlProvider } from "react-intl";
import { useRouter } from 'next/router';

const messages: any = {
de,
en

b

function CookBook({ Component , pageProps }: AppProps) {

/7

const { locale } = useRouter();
const localeToString = locale as string;

return (
<Provider store={store}>
<Layout>
<IntlProvider locale={localeToString}
messages={messages[localeToString]}>
<Component {...pageProps} />
</IntlProvider>
</Layout>
</Provider>

)

Figure 6.74: Update _app.page.tsx file

Finally, we can use the translations in our code. Let us add the string to the main
page like this:

000
// same code
import { useIntl } from 'react-intl'
const Home: NextPage = () => {
const intl = uselntl();
const title = intl.formatMessage({ id: "page.home.head.title" });

code

// sa
return (
<div className={styles.container}>
/ same code

<h2>{title}</h2>

// same code

Figure 6.75: Implement the translation string into the page

Implementing internal pages using Next]S 165

Now if we test the application the data on the page will look like this for the English
URLs:

& @) localhost

& Gmail * YouTube A Maps

Next)S. Cookbook

Home Articles About

Hello there ! This is the main page of CookBook
Cookbook in English
Figure 6.76: English version of the application

On the other hand for the German language it will be like the following;:

& cC localhost

& Gmal > YouTube A Maps

NextJS. Cookbook

Home Articles About

Hello there ! This is the main page of CookBook

Kochbuch in Deutsch

Figure 6.77: German version on the application

Conclusion

In this chapter we learned how to implement any internal pages from the very
beginning into the application using the test driven development flow. Also, it can
be multi-language pages. We can change the application language depending on the
user data that can come from API. Please do not stop at the border of the example
from this chapter and try to make more pages with more functionality. We will need
itin the next chapter where we will implement the E2E testing. That means the more
pages we have - the more tests we could create to cover the application. See you in
the next chapter.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com
El

e
Elu

J

CHAPTER 7

The superpower of
E2E testing in Next]S

Introduction

In the software development world, we know two possible ways of creating the
application. The first one - is to create the application just using the requirements
and local infrastructure. Second - make an application production ready from the
beginning. The first one -is keeping development in the fast lane, but the second
one - is keeping the application in the quicker delivery lane. From the business,
perspective delivery is what we want at the end of the day. Knowing this we will
follow the guides to create the production-ready infrastructure using Next]S as a
core framework.

Structure
e Prepare the application for the production release
e Choosing an End-to-End End testing framework
o Setup Cypress for Next]S
o Setup Playwright for Next]S
e Writing first e2e test with Playwright

168 Next.js Cookbook

¢ Creating more tests for the application
o Covering the authorization
o Covering internal pages

e Conclusion

Objectives

In this chapter, we will learn what is E2E testing, and why it is so essential, for
production-ready applications. We will compare the two most popular frameworks
that can be used with Next]S. Cover our application with tests and also we cover the
authorization of the user.

Prepare the application for the production
release

In this, we will create a flow chart that will visualize what environment and
infrastructure we need.

In Figure 7.1 you can find several lanes that represent the development steps from
idea to product.

To create the product we will behave as we did from the very beginning of this
book. First of all, we will investigate what we want to create and what problem
will be solved in the application. Then we will create the requirements plan and
wrap it with End-to-End mockups and fake data. After that, we can follow the test
driven development rules and create tests for each part of the application to proceed
with the code. The coding part - is the most fun part for every software developer.
Using all the requirements mocks and tests we can create as much possible error-safe
applications.

When we finish with the coding stage we need to test the result somehow. Yes, we
have unit testing but, unit tests do not behave as the real user. It can’t open the
browser and enter the real page. So for this task, we need to create the E2E testing
environment and tests. That is what we will learn in this chapter.

Only when we are sure that everything works correctly we can deliver our code into
the cloud environment and monitor the product(that is what we will do in the next
chapters).

The superpower of E2E testing in Next]S 169

‘ Investigate the problem to solve H Create the requirements plan }—» Create the design and data mocks }—\

‘

‘ Cover the functions }—»{ Cover the componen! } } Cover the store J—\

)
2
=
<
=
°
=
=
=
@
14

Unit Tests

Create store
Create ui atoms and molecules

Create components

Create the pages

Cover API Cover pages

[
Y

Deploy to testing environment } { Deploy to staging environment } [Deploy to prod environment }

—_—

A

Frontend monitoring } { Backend monitoring } { RUM monitoring }

Figure 7.1: Development flow chart with steps

Choosing an End-to-End testing
framework

There are several solutions on the market that can solve E2E testing problems.
The difference is in the possibilities of the platform, the size of documentation the
complexity of using and maintaining. As front-end developers, we do not need any
complex systems like Selenium or any competitors. But we need some simple tool
that will allow us to open the virtual browser and walk through the site step by step.
It would be great to use the same Javascript (or Typescript) for it to not learn new
languages only for test creation.

170 Next.js Cookbook

Setup Cypress for Next]S

Cypress is a powerful and easy-to-use framework with Chromium support. It has all
the required by the developer or QA tools for fast setup, code, and scale of the tests.

To add Cypress to the project, we need to enter the following commands at the root
of the project:

npm install
// OR
yarn add

Figure 7.2: Commands to add Cypress to the project

Next, we need the command in the package.json file that will start our Cypress
tests. To do it add the command from Figure 7.3 to file:

"scripts”:
"dev":
"build":
"start™:
"lint": - "ne

"

“test™:-"

"cypress":

"test:eze": |

"test:all": "yarn tes rage &% yarn-play

Figure 7.3: Command that will start the Cypress tests

The superpower of E2E testing in Next]S

171

After the first run, you will see the debug window like in Figure 7.4:

yledComponents

File Edit View Window Help DeveloperTools

@ cookbook © Docs

What's New in Cypress

12.0.0

For a complete list of updates and breaking changes in v12.0.0, please review our changelog
Testing Multi-Origin Workflows

Cypress now has full support for testing multiple origins in a single test with the
cy.origin() command! To take deep-dive into how this works, read our blog

Test Isolation

Cypress now ensures each test runs in a clean browser context by default. We now clear the
page, cookies, localStorage, and sessionStorage before each test to guide
developers towards writing independent tests from the start.

If your existing tests relied on a previous test to run successfully, you might need to make
some modifications to your test suite. See the Migration Guide for more details on what you
can expect.

Figure 7.4: First run of Cypress

Then you will see this window:

@ cookbook te @ vi2z02 @ Docs

Welcome to Cypress!

Review the differences between each testing type 2

Ea)

E2E Testing Component Testing

d tes

Not Configured Not Configured

Log in

Figure 7.5: Start screen for Cypress

172 Next.js Cookbook

Let us review the difference of choice provided by Cypress:

E2E tests are required compiled version of the project and will follow the URL links
the same way as any real user will. That means that we will have pages that contain
all components in the browser. The tests will contain checks that the user will rightly
see on the page:

Component tests it is the same tests that we did before using Jest. These tests will
use isolated components and contain checks for the components only. That means if
we choose Cypress as a testing framework we could get rid of Jest and use Cypress
as the only testing framework

You can also see the different descriptions provided by Cypress in Figure 7.6:

Key differences Need help 2
End-to-end tests: Component tests:
® Visit URLs via cy.visit() ¢ Import components via ey.mount()
e Test flows and functionality across multiple pages e Test individual components of a design system in isclation
® |deal for testing integrated flows in CD workflows ® |deal for testing isolated flows and components in Cl
Code Example Code Example
1 it(‘'only shows a medal on first visit', () = G 1 import BaseModal from °./BaseModal 2
2 cy.visit('http://localhost:3000/") 2
i .get(’'[data-testid=modal]’) 3 it(‘closes when the X button is pressed’, () =
.should('be.visible') 4 cy.mount{<BaseModal />)
5 .get('[aria-label=Close]") 5 .get('[aria-label=Close] ")
6 .click() 6 -click()
.get('[data-testid=modal]’)
8 should not load a second time 8 .should(‘not.exist’)
9 .reload() 9)
10 .get('[data-testid=modal]’) % 5 =
11 .should('not.exist')
2 t) J
4 »

Figure 7.6: Description provided by Cypress

Click on the left block from Figure 7.6 to configure the E2E tests using Cypress. After
clicking, you will see that Cypress added some files to the project like in Figure 7.7:

The superpower of E2E testing in Next]S 173

Configuration files
We added the following files to your project:

cypress.config.ts

v
The Cypress config file for E2E testing.
= cypress\support\e2e.ts
The support file that is bundled and loaded before each E2E spec.
% cypress\support\commands.ts
A support file that is useful for creating custom Cypress commands and overwriting existing ones.
& cypress\fixtures\example.json

Added an example fixtures file/folder

Figure 7.7: Configuration result for E2E using Cypress

In the next step you will see the screen where you will need to choose the browser to
test (you could also check the Electron version of the project):

Choose a browser

Choose your preferred browser for E2E testing.

@ [R
Chrome Edge Electron

v108 v108 w106

B start E2E Testing in Chrome

€ Switch testing type

Figure 7.8: Browser configuration in Cypress

After you click “Start E2E testing in Chrome” (It is chosen in Chrome but you
can choose any other preference), Chrome browser will open the new controlled
window with content provided in Figure 7.9:

174 Next.js Cookbook

D localhost

chrome is being controlled by automated test software.

2 cookbook

@ vi202 @ Chrome 108 @ Docs

® Login

Create your first spec

Since this proj W, We recommer 1 use the specs and

e've written for you t

sted here, you

o update

pec patte!

View spec pattern

Figure 7.9: Cypress testing interface

Now you can create an empty test by choosing a right block, or scaffold example
using a left block. We will choose the left one for example purposes. You will see the
content on your page that contains the list of example specifications that was added
to the project as depicted in Figure 7.10:

E2E specs Last updated 2 Latest runs ? Average duration ?
cypress\e2e
1-getting-started
todo [a minago
2-advanced-examples
actions [aminago
aliasing [a minago
assertions [aminago
connectors [aminago
cookies @ aminago
cypress_api & aminago
files & aminago
location [® aminago
misc [aminago
navigation ® aminago
network_requests [aminago
querying [aminago
spies_stubs_clocks @ aminago
storage [® a minago
traversal [a minago
utilities [amin ago
viewport [a minago
waiting [® aminago
window & aminago

Figure 7.10: Example specifications provided by Cypress

The superpower of E2E testing in Next]S 175

In this list, you can click on each test that will be run immediately. Let us click on
todo.cy.js file for example.

https: s = %
mands ~ tilitie ress AP itH

cypress.io

todos

Walk the dog

1item left Al Active Completed

Figure 7.11: E2E test result

After clicking you will see the process of the E2E testing. Cypress will follow the
instructions provided in section 1 in Figure 7.11. It will open the URL from section
2 . The browser that will be used for the test is in section 3 in Figure 7.11. Section
4 is the resolution of the screen that will be used for the test. This configuration is
controllable and can be configured before we start any test.

If you open the test instruction from section 1 in Figure 7.11 and hover over one of
the instructions you will also see the part of the page that is tested by this instruction
like in Figure 7.12:

todos

2 items left Al Active Completed

Figure 7.12: Example of hover behavior

We can also check the state change of elements. For example, we have the checkbox
state change and need to figure out the difference before and after action. To get the
information we can click on the action in the list and then we can see the action box

176 Next.js Cookbook

that can show us the difference. You can click on the “before” and “after” buttons
to change the state. The result you can see in Figure 7.13:

2

d to have text Walk the

todos

- contains Pay electric bi o Pay electric bill
parent

Walk the dog
2 items left Al Active Completed

i.completad> to have

Double-click to edit a todo

[before | after ® Highlights X

with a checked task

Figure 7.13: The state change for the checkbox element

By default configuration, the IDE for the project will be VS Code if you will not
change this parameter. If you click on the “Before each” or “Test body” section
there will be a button to open the test code in the IDE like in Figure 7.14.

example to-do app
s two todo items by default
EACH & Open in IDE

visit htt

Figure 7.14: Open in IDE button for the test

Inside the file, you can see regular E2E test code like in Figure 7.15:

describe('example to-do-app’,
I beforeEach =>-{

.io/todo’

cy.get('.todo-1list 1i').should('have.length', 2

cy.get('.todo-list 1i').first().should('have.text', 'Pay-electric bill’
cy.get('.todo-list 1i').last().should('have.text', ‘'Walk the dog'

¥

Figure 7.15: Example of E2E code from Cypress

The superpower of E2E testing in Next]S 177

Setup playwright for Next]S

The next framework is the outstanding result of the Microsoft team that can use any
browser in test flow, authorize once by test, test API, and many other features.

We have added the Playwright to our project in the previous chapters. But if you
missed this part please follow the steps above.

To connect Playwright you need first enter these commands from Figure 7.16 in the
console:

npm install --save-dev @playwright/test
yarn add --dev @playwright/test

Figure 7.16: Commands to add playwright

You will also need this command in the package.json file to run the playwright:

"test:e2e": "yarn playwright test",

Figure 7.17: Command in the package.json file to run Playwright

After the installation Playwright will add an example specification file that we could
use to check the possibilities of the framework. Let us run the command to check the
result of it: (Figure 7.18)

Running 75 tests using 8 workers

To open last HTML report run:

Done in 60.82s.

Figure 7.18: Playwright command using the result

As you can see from Figure 7.18 we passed all provided in the example tests and also
see the command to see the report. Let us enter this command to see the report of the
tests. The result can be seen in Figure 7.19:

178 Next.js Cookbook

v example.spec.ts

New Todo > should allow me to add todo items

New Todo > should allow me to add todo items

» New Todo > should allow me to add todo items

» New Todo > should clear text input field when an item is added

New Todo > should clear text input field when an item is added

New Todo > should clear text input field when an item is added

/ New Todo > should append new items to the bottom of the list

~ New Todo > should append new items to the bottom of the list

» New Todo > should append new items to the bottom of the list

All 75 Passed ' 75 Failed ‘0 Flaky ‘0 Skipped ‘0

chromium

firefox

webkit

chromium

firefox

(webkit)

chromium

firefox

(webkit)

Figure 7.19: Report of Playwright tests

In this report (from Figure 7.19) you can get this information:

e What test instruction was loaded
e In what browser

e Time of operation

e The file name of the instruction

e Status of the test instruction

In the next step, we can click on instructions and check the report of exact instructions.

The result of it can observe in Figure 7.20:

The superpower of E2E testing in Next]S 179

Q All ‘75 Passed 75 Failed ‘0 Flaky ‘0 Skipped ‘0

New Todo

should allow me to add todo items

examplespec.ts:14

chromium

~ Run

v Test Steps

¢ Before Hooks

/ beforeEach hook — e

test.beforeEach(as ({ page })
await page.goto(
~ browserContext.newPage
7 page.goto(https://demo.playwright.dev/todomvc) — e»

test.beforeEach(async ({ page }) {
await page.goto(

}

/ locator.fill.new-todo) — exampl

locator.press(.new-todo, Enter) — example

Figure 7.20: Report for the selected instruction

Now (in Figure 7.21), we can see the full report that was done in the instruction line
by line with the status of execution.

Let us generate the error to see what will be if the test will fail. You can see it in Figure
7.21:

180 Next.js Cookbook

Q All 75 Passed ' 0 Failed 75 Flaky ‘0 Skipped 0

New Todo

should allow me to add todo items

example.spec.ts:14

chromium

Run

~ Errors

({ page }) {

Figure 7.21: Failed test example in Playwright

We have made the test to call the wrong URL so the error report shows that timeout
was exceeded and the robot could not open the page. Next what we can see here - is
the line and what instruction was called to generate the error in this test. Also at the
top information line, you can see the number of failed tests.

Next what we need to know about Playwright - is the possibility to check the traces.
Traces is the same information that was in the browser at the moment of execution.
That means that we could see the console.log and network information at the
execution time. To get this information we need to call the Playwright test with a
special flag like this:

00

Figure 7.22: Run the test with the trace-on flag

After that, you will see an updated report in your browser. There will be a new
section with a trace file and trace view like in Figure 7.23:

The superpower of E2E testing in Next]S 181

v Traces

Traces

Figure 7.23: Traces functionality in the Playwright Report

By clicking on the picture, we will be led to the traces page where we can see the
whole history second by second what was in the screen, console, network, and
metadata like in Figure 7.24:

404

Figure 7.24: Traces view for the test

We can follow the robot’s actions second by second and see what data was sent,
what consoles were on the browser, what steps were correct or not, and the like. This
trace view will give us full information about what was wrong with the page. Also,
in Figure 7.25 there is a link to download the archive. This archive contains all the
trace information that can be integrated into your internal monitoring system and
provides the trace view there.

182 Next.js Cookbook

Writing the first e2e test with Playwright

As you can guess, we will choose Playwright as a testing framework for our
application. Let us try to create the first test for our application using the example
specifications.

For more convenient use of Playwright in your IDE please install this extension from
Figure 7.25:

Playwright Test for VSCode ¢

Microsoft < 102,803 * ok kKA (11)

Run Playwright Test tests in Visual Studio Code.
Disable iV Uninstall |V <3

This extension is enabled globally.

Details Feature Contributions Runtime Status

Figure 7.25: Extension for the VSCode to use Playwright tests in IDE

After that you will see the update in your test area in the IDE like this:

Jest Test Provider (cookbook)
cookbook (
__tests__
articles.test.tsx
index.test.jsx

ui.test.tsx

> © pages

Playwright 6.C
e2e 6.0s
cookboolk.spects ¢
Cookbook pages should work c

Main page should have title 6

Figure 7.26: Updated test view in the VSCode

In my example, we have already added the first test into the test flow. To add it on
your side please create the file with the name cookbook. spec. ts in the e2e folder (do
not forget to remove or rename existing example files in this folder). Also, we will
require some configuration for the tests so please create the configuration file too.

The superpower of E2E testing in Next]S 183

The file structure example is in Figure 7.27:

v ele

configuration.ts

cookbook.spects

example.old-spec.ts

Figure 7.27: Example file structure

In the newly created file please add this code from Figure 7.28:

import { test, expect, Page } from '@playwright/test’;
import { Configuration, expectations } from './configuration';

test.beforeEach(async ({ page }) => {

awailt page.goto(Configuration.HOST);
1)

test.describe('Cookbook pages should work correctly', () => {
test('Main page should have title', async ({ page }) => {
awailt page.goto(Configuration.HOST);
await expect(page.locator('hl')).toHaveText(expectations.mainPage.header)

EY;
)

Figure 7.28: First e2e test with Playwright

And in the configuration, there should be this code as in Figure 7.29:

enum Configuration {

HOST = 'http://localhost:3005"
}E

const expectations = {
mainPage: {
header: 'Welcome to the cookbook'
I
}

export { Configuration, expectations };

Figure 7.29: Configuration for the e2e test

Now if you check the visual part of the test (or if you run the test) you will see that
it is red and failed. It is because the text in the h1 tag is not fit the expectations. We

184 Next.js Cookbook

need to fix it and add the text to the h1 tag. After that, you will see that all tests are
green.

cookbook.spects

Cookbook pages should work c

© Main page shoul > £)

Figure 7.30: Green tests for Playwright

Creating more tests for the application
As our application uses more than one page we need to create more tests. We need
to create these tests:

e Main page (already have it)

e Articles list page

e Article page

e Login page

Covering the authorization

We are using authorization in the application, so we will require to add authorization
into the flow. There are several ways to achieve it using Playwright. We will take the
most basic one and add the entering login page and authorization before each test.

To create the login flow add this code into the before each section:

test.beforeEach(async ({ page }) => {
awalt page.goto(Configuration.HOST + '/login');
awailt page.locator('#login').fill(expectations.auth.login);
await page.locator('#password').fill(expectations.auth.password);
await page.locator('#submit-login').click();

)

Figure 7.31: Authorization flow in before-each section

The superpower of E2E testing in Next]S 185

After that each time when you start your test, the robot will open the login page and
do authorization and you can expect the elements on the page that be shown only

for authorized users. Add this code to your test to check if we have an add-article
button:

test('Articles list should show data',async ({page}) => {
await page.goto(Configuration.HOST + '/articles');
awailt expect(page.locator('button').first()).toHaveText([
expectations.articles.add
D;
19

Figure 7.32: Test for the article page to check the button

We also need to update the configuration like in Figure 7.33:

import { getMock } from "../pages/mocks";

enum Configuration {
HOST = "http://localhost:3005"
-

const expectations = {
mainPage: {
header: 'Welcome to the cookbook'

}s
auth: {
login: getMock.users[0].user,
password: getMock.users[0].password
}s

articles: {
add: '+ add article’

s
}

export { Configuration, expectations };

Figure 7.33: Updated configuration file

186 Next.js Cookbook

Please find the updated test code in Figure 7.34:

import { test, expect, Page } from '@playwright/test';
import { Configuration, expectations } from './configuration';

test.beforeEach(async ({ page }) => {
awailt page.goto(Configuration.HOST + '/login');
await page.locator('#login').fill(expectations.auth.login);

await page.locator('#submit-login').click();

B

test.describe('Cookbook pages should work correctly', () => {
test('Main page should have title', async ({ page }) => {
awailt expect(page.locator('hl')).toHaveText([
expectations.mainPage.header
105
)
test('Articles list should show data',async ({page}) => {
awalt page.goto(Configuration.HOST + '/articles');
await expect(page.locator('button').first()).toHaveText([
expectations.articles.add

awalt page.locator('#password').fill(expectations.auth.password);

Figure 7.34: Full code of updated E2E test

Covering internal pages

Let us add some more tests for internal pages to have better coverage. We will follow

this flow to create the tests for the articles:

e Articles list should show the data list

e In the article list if we click on the edit button modal window should be

displayed

o If we click add article button then also modal window should be displayed

¢ On the article, the page should be data that exist in the article

The superpower of E2E testing in Next]S 187

To cover these requirements please update the test file with the following code from
Figure 7.35:

test('Articles item should show data',async ({page}) => {
await page.goto(Configuration.HOST + expectations.articles.itemUrl);
await expect(page.locator('hl')).toHaveText([
expectations.articles. itemHeader
i
b
test('Add article should open the modal',async ({page}) => {
awailt page.goto(Configuration.HOST + '/articles');
const buttons = await page.locator('button').first();
buttons.click();
awailt expect(page.locator('id=edit').first()).toBeVisible();
})s

test('Edit button should open the modal',async ({page}) => {
await page.goto(Configuration.HOST + '/articles');
const editButtons = await page.locator('role=checkbox');
editButtons.first().click();
awalt expect(page.locator('id=edit').first()).not.toBeHidden();
})s

test('Article page should render the page',async ({page}) => {
await page.goto(Configuration.HOST + '/articles');
const editButtons = await page.locator('role=checkbox');
editButtons.first().click();
await expect(page.locator('id=edit').first()).not.toBeHidden();
),

Figure 7.35: Tests that will cover the requirements

Please note that we need to use “await" for each action because this directive creates
the wait-for-render mechanism that safely wait that element is rendered on the page.

We will also require to update the expectations array to have the mock data. Collect
the code in Figure 7.36:

188 Next.js Cookbook

const expectations = {
mainPage: {
header: 'Welcome to the cookbook'
}s
about: {
header: 'This is the About page of CookBook'
}s
auth: {
login: getMock.users[@].user,
password: getMock.users[0].password
}s
articles: {
header: 'Articles list',
add: '+ add article',
itemUrl: '/articles/123/';
i{temHeader: 'test title'

Figure 7.36: Updated expectations array

As you see, we added the role identification to the button. This is needed to call this
button by identification. You can use anything that will be convenient for you (class,
role, data). In this book, the button is used as the checkbox for the modal window so
we could add role=checkox for it.

Now if you use the extension for the VSCode you will see that all tests are green.
That means that all tests are green as in Figure 7.37:

v © Playwright 9.3s

cookbook.spects 9.3s
okbook pages should work c
Main page should have title 1
Articles list should show data
Articles item should show data
Add article should open the m
Edit button should open the ir
© Article page sho. > &> 99

Figure 7.37: Result of Playwright tests

The superpower of E2E testing in Next]S 189

Conclusion

This summary effectively wraps up the chapter on end-to-end (E2E) testing,
highlighting the benefits of incorporating E2E tests into a developer’s daily workflow.
By using E2E tests, developers can reduce the number of cycles required before
moving to production, and E2E tests can also be integrated into CI/CD pipelines,
which is particularly valuable for larger teams and projects

The next chapter will lead us to the most important part of the development. We will
introduce the delivery stage and deployment to the production. To achieve it we will
check the best possible on-market tools that you can use for your next project. See
you in the next chapter.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com
El

e
Elu

J

CHAPTER 8
Deploying Next]JS
project to production

Introduction

In modern software development, the creation and coding stage is only part of the
lifecycle of the development process. As you can remember from the last part it is
only a tiny piece of the process that is surrounded by a big number of steps. One
of the important parts is delivering software to the end user. On the web, it is the
deployment of applications into the cloud service, hosting, or any other servers. We
will cover the topic of cloud services in this chapter as it is the most modern way of
using the web today.

Structure
e Preparing the project to fly into production
0 Choosing the “perfect” render for the application.
0 Measuring performance and maintainability applications in Next]S.
o Connecting Sentry for application monitoring.
e Using AWS Amplify to host our application
o Understanding Amplify Admin area

192 Next.js Cookbook

o Creating the data models for the application
o Creating an authentication flow with AWS
¢ Adding data in the admin area
e Using cloud functions for application
¢ Reuse Cloud Functions with Layers functionality
¢ Finishing the backend with Amplify
e Host the application in the cloud and first run

e Conclusion

Objectives

In this chapter, we will speak about cloud hosting solutions and especially AWS
Amplify. This service from AWS is covering all possible quick-start requirements
of cloud hosting and service. Amplify is containing a visual backend service that
provides GraphQL as the result (this is why we covered this topic in previous
chapters), also there is a connection to any GIT service and build pipelines. The
service itself is partly free which will allow anyone to have a quick launch of your
idea in a very short time.

Preparing the project to fly into production

Before we start to deploy any code base into the cloud we need to speak about what
exactly we will send into web hosting. Regarding NextJS there are several ways to
the build result from the raw code into a complete ready-to-use application. For
development purposes, we start a live server that allows us to see the hot updates
immediately but in production, this is bad practice so we need to build the code into
the application before use.

Choosing the “perfect” render for the
application
Let us speak about the possible way to create the user-end application in Next]S.

Regarding the framework in our toolbelt, there are several build types provided:

¢ Client-Side rendering (CSR): In this case, the whole project will be the same
Single-Page application as any regular React application. In this way, you
will get the HTML page that will fetch the data dynamically so at the first

Deploying Next]S project to production 193

load the page itself will be super-light and loads as fast as possible. This is
a piece of good news. The bad news is that for SEO this way of rendering
is one big disadvantage. Robots will sync your data less effective and will
require more attention with search engines. The ranking of your pages will
be lower than the optimized ones that generated on the server. This way
of project build can be recommended for the internal systems, that do not
require any actions from the search engine robots and are used as a business
system. As an example, we can take CRM systems, dashboards, or internal
messaging.

Incremental Static Regeneration (ISR): In this case, pages will be generated
on the fly without the whole project being built. This way of rendering is
very interesting as its fits the SEO requirements, and also does not need the
update of the project each time you add the page to the project. That means,
for example, you have a generatable page like [pid].page.tsx, and each time
you create the new PID for this page there is no need to rebuild the project,
and the old pages will be cached. It could look like the perfect build for the
project but there are also disadvantages. On the other hand - we will require
more server resources depending on the number of pages and users that
could start growing.

Server Side Rendering (SSR): This way is pretty much the same as ISR but
the difference is that the page will be re-rendered on the server side for each
request. In this way, we will need even more resources compared to ISR.

Static Site Generation (SSG): In this case, HTML will be generated in the
build stage. In this way, we can store and cache files in CDN for performance
increase. We can also choose between static site generation with fetched data
or without. The disadvantage of this way is that each time we add a page or
make changes in the content we need to rebuild the whole project. But an
advantage is the performance of the project in production.

To choose what build type is perfect for your next project please answer several
questions to help yourself:

How many times per period you will add or update pages and content of the
site?

What hosting provider do you have for the project?
Do you need SEO?

Do you need a cache for each page or only some of them?

194 Next.js Cookbook

The answers will help you to recognize what kind of project you have and how to
choose your perfect way of building and delivery.

Measuring performance and maintainability
applications in Next]JS.

Before we speak about performance measuring of the application, we need to
implement some basic knowledge about ‘what is performance’ generally and how
to measure it on the web.

To solve this issue we will add here information about Web Vitals as it is the base
of the performance measuring in the web industry. Web Vitals is the initiative by
Google that provides the signals to help improve your web application. Metrics of
the Web Vitals are separated into three different types:

e Largest Contentful Paint (LCP): this type will measure application loading
performance. The average time of the application loading is about 2.5 seconds
after the page first start. This number is provided by the Web Vitals rules.

e First Input Delay (FID): this type will measure interactivity. The delay
should be no more than 100 milliseconds to fit the good user experience rule.

e Cumulative Layout Shift(CLS): this type will measure visual stability in
scores. The score itself is measuring the difference between the page before
action and after (for example asynchronously loaded content after the page
is loaded). The good score should be 0.1 or less.

¢ Time to First Byte (TTFB): this type shows the time between the browser
requesting a page when the first byte was received from the server. That
means that we take the time between the request start and response start in
milliseconds.

¢ First Contentful Paint (FCP): this type measures the time from when the
page starts loading to when any element of the page is rendered on the
screen. The average time for a good load is about 1.8 sec.

¢ Interaction to next Paint (INP): this metric is assets responsiveness and
causes when the page becomes unresponsive. This metric is experimental so
do not expect strict metrics values.

Deploying Next]S project to production 195

In Figure 8.1 we can observe visually how the types work:

(Loading) (Interactivity) (Visual Stability)
| I E——
Largest Contentful Paint First Input Delay Layout Shift Delay
- e - -
2.5 see 4.8 sec 100 =5 W0 =y LA 0.28
(Loading) (Visual Stability)
First Contentful Paint Time To First Byte Interaction to Next Paint
- el - - ot
1.8 sec 2.0 sec 800 =3 1800 ms 200 e 500 =

Figure 8.1: Web Vitals visually

Directly, we can implement this measure in our application using internal tools that

exist in NextJS. Add this code in _app.page.tsx to see the performance data in your
browser console as shown in Figure 8.2:

o0 @

// Same code

export function reportWebVitals(metric: NextWebVitalsMetric) {
console.log(metric)

}

function CookBook({ Component , pageProps }: AppProps) {
// Same code

I

export default CookBook

Figure 8.2: Function to get

196 Next.js Cookbook

After the page reloads, we will see the data in the browser console like in Figure 8.3:

Figure 8.3: Metrics in the browser console after code update

As you can see, we can filter the metric data by the label, to get only web-vital
information or by the name to separate each metric.

Also, there is a NextJS-specific metrics that exist in the report on the page load or
route change. These metrics will have a custom label and can be separated by the
name:

¢ Next.js-hydration: The time of hydration in milliseconds

¢ Next.js-route-change-to-render: The time that takes to start rendering the
page after router change

Deploying Next]S project to production 197

¢ Next.js-render: The time that takes to finish rendering the page after a route
change

In Figure 8.4 we can see the example of a report in the browser console after the route
change:

Figure 8.4: Custom Next]S metrics

Getting metrics is only half of the maintainability process. We need to send this data
somewhere. As you can see the data itself is just an object so we can use any API to
collect the data. To send it into the API we can use the code example from Figure 8.5:

export function reportWebVitals(metric: NextWebVitalsMetric) {
const body = JSON.stringify(metric)

const url = 'https://example.com/analytics'
if (navigator.sendBeacon) {
nav r.sendBeacon(url, body)
} else {
fetch(url, { body, method: 'POST', keepalive: })
}
}

Figure 8.5: Send metrics example code

For modern browsers, there is a sendBeacon function that asynchronously sends
HTTP Post requests containing a small amount of data to some web server. If there is
no such function we will use regular fetch (that is not recommended). As a receiving
data API, we can use any service that provides this possibility (for example: Elastic
Kibana, Zabbix, or Dynatrace). In the example from Figure 8.6 we will use the Google
Tag manager to store the browser metrics:

198 Next.js Cookbook

export function reportWebVitals({ id, name, label, value }) {
window.gtag('event', name, {
event_category:
label === 'web-vital' ? 'Web Vitals' : 'Next.js custom metric',
value: Math.round(name === 'CLS' ? value * 1000 : value),

event_label: 1id,
non_interaction: 5
1)
}

Figure 8.6: Example of using Google Tng to store the metrics

Connecting Sentry for application monitoring

Before we start implementation let us speak about the service itself and why we
choose it as the performance monitoring tool. The main motivation is that the service
was created as a tool to catch JavaScript errors in the project. Today this feature
is only a small part of the big ecosystem. That means we could wrap our project
not only with the solution that will help us monitor the project’s performance data
but also any errors that could happen while using the app. And the main reason,
that Sentry is the ready-to-use ecosystem with dashboards and notifications. These
possibilities are not in the built-in scope for NextJS so we will proceed with Sentry.

First, open the Sentry in the browser using this link “https://sentry.io/". In Figure 8.7
you can see the main page:

C @ sentryio

‘5& SENTRY PRODUCT > PRICING pocs RESOURCES BLOG SANDBOX SIGN IN GET STARTED

Codecov is joining Sentry: Where Code Coverage Meets Application Monitoring. Read the announcement.

Working Code, Happy Customers

Take action on broken lines of code, crashes, and busted API calls with the only

developer-first app monitoring platform built to give you answers - not clues.

Over 3.5M developers and 85K organizations rely on Sentry to see what

actually matters, solve what's urgent faster, and learn continuously about their code.

TRY SENTRY FOR FREE

Figure 8.7: Sentry main page

Then you need to click the "Get started" button to proceed. In the registration form
please fill all required data or choose Sign-in with social media(I will choose sign-in
with Google):

Deploying Next]S project to production

199

Start Monitoring
today.

Sentry helps over 3.5M developers and 85K organizations

see what actually matters, solve errors and performance

issues quicker, and learn continuously about their

application health - from the frontend to the backend.

These folks get it:

GitHub

A ATLASSIAN

BR Microsoft

CLOUDFLARE

REQUEST ADEMO

Track in seconds

Organization

Password

I would like to receive updates via email

| agree to the Terms of Service and Pri

CREATE YOUR ACCOUNT

Got a promo code? Redeem

) GITHUB

(G GOOGLE)(

)(J AZURE DEVOPS)

Figure 8.8: Registration form for the Sentry

Now you can create a new project for the implementation by clicking on the “Create

project” button.

Create a new project in 3 steps

Set up a separate project for each part of your application (for example, your API server and frontend client), to
quickly pinpoint which part of your application errors are coming from. Read the docs.

1. Choose your platform

Popular Browser Server Mobile Desktop Serverless All
s
. NET NET
R i e S
nede Express w
i @
jEoes . -

l s
VuE

unITY

2. Set your alert frequency

@ Alert me on every new issue
When there are more than | 10

occurrences of

I'll create my own alerts later

3. Name your project & assign it a team

Project name Team

project-name Select a Team

«

FLUTTER

2

LARAVEL

~ aunique errorin

@

o0 am SPRING B0OT InvasCRIPT
p django Q €3
@]
PrTHON DarnGo Fastapl FLask
one minute v

m
s

ANGULAR

REACT NATIVE

Q_ Filter Platforms

NEXT.
Js

NEXT.3S

Figure 8.9: Creating a new project in Sentry

200 Next.js Cookbook

In the screen from Figure 8.9, we need to the setup project. As you can see we
can choose Next]S as a platform. We will keep an alert frequency for every issue
by default. The name and team of the project will be CookBook as well. When
everything is filled we can press the “Create project” button.

In the next step, we will get instructions on how to implement Sentry in our project.
Please use these commands from Figure 8.10 to install Sentry in our project:

yarn add @sentry/nextjs
or
npm install --save @sentry/nextjs

Figure 8.10: Commands to install Sentry in the project

After that, we can configure the Sentry. Use this command to achieve it:

npx @sentry/wizard -i nextjs

Figure 8.11: Command to configure Sentry in the project

As we are using TypeScript in the project so we need to do some manual changes
to activate sentry in the project. Sentry setup will create several files automatically.
We need to change the names of these files. Check Figure 8.12 to see the file structure
that will be changed:

Figure 8.12: Files structure to be changed

Deploying Next]S project to production 201

As you see we will rename _error.js and sentry_sample_error. js files to _error.
page.tsx and sentry_sample_error.page.tsx. We will need to make changes in the
next. config file. Please use Figure 8.13 to make updates:

L NN
const { withSentryConfig } = require("@sentry/nextjs");
const nextConfig = {
sentry: {
silent: true,
}
J;

module.exports = withSentryConfig(nextConfig);

Figure 8.13: Next|S configuration update

Finally, we need to check if everything works correctly. To do that let us add a button
that will trigger the error on click. This error will be sent into Sentry automatically.
Update your index page as provided in Figure 8.14:

const Home: NextPage = () => {
return (

<button
type="button"
onClick={() => {
throw new Error("Sentry Frontend Error");

1

>

Throw error
</button>

)
}

export default Home

Figure 8.14: Home page update to send error into Sentry

202 Next.js Cookbook

When everything is configured you can restart the server and try to click the button.
When you trigger the error in the Sentry console you will see a new issue generated
in the list like in Figure 8.15:

[cookbook

B3 AllEnvs v B 14D v Q search by release version, build, package, or stage

Crash Free Sessions Crash Free Users Number of Releases Apdex

1, 0938

Failure Rate ® ThisPeriod © Previous Period @ Releases

7%
&%
5%
4%
3%
2%
1%
0% T T T T T T T
Dec 14 11:00 PM Dec 16 11:00 PM Dec 18 11:00 PM Dec 20 11:00 PM Dec 22 11:00 PM Dec 24 11:00 PM Dec 26 11:00 PM

Total Transactions &1 Display: Failure Rate v

Apdex ® ThisPerind © Provious Period @ Releases

1
0.8
0.6
04
02

o] T T T T T T T
Dec 14 11:00 PM Dec 16 11:00 PM Dec 18 11:00 PM Dec 20 11.00 PM Dec 22 11:00 PM Dec 24 11:00 PM Dec 26 11:00 PM

Total Transactions 61 Display: Apdex v

All Issues 2 New Issues 2 Unhandled 0 Regressed 1 Resolved 0 Openin Issues

ISSUE EVENTS USERS ASSIGNEE

Error onClick{webpack-internal://./pages/index.page.tsx)
Sentry Frontend Error 3 1 o ~

B TypeError .././sentry/scripts/views.js in poll
Object [object Object] has no method 'updateFrom’ 1 1 o -

Figure 8.15: Sentry console with a new issue in the list

Using AWS Amplify to host our
application

Before we start exploring the AWS Amplify service we will check if there is an in-
house solution to host the project using Vercel possibilities. There is a reason why

Deploying Next]S project to production 203

we introduce AWS in this book against the Vercel delivery system and let’s do some
comparison. As there is a big list of the same possibilities and differences we will
take only key elements that will be mainly in the choice between services. The
comparison is presented in Table 8.1:

Feature Vercel AWS Amplify
Development Ul and Admin Ul X Amplify Studio
Infrastructure Multi-Cloud AWS
Database X DynamoDB
Authorization service X Amplify Auth

Table 8.1: Comparison table for Vercel and AWS services

As you can see AWS Amplify covers more features that could be critical for full-stack
development, that's why we will choose and proceed with it for the delivery our
application.

Understanding Amplify admin area

To get into the admin area we will need to create the AWS account first. Use “https://
aws.amazon.com/amplify/" this link to get into the AWS amplify page. Then click
the “Create an AWS Account’ button to create the account.

@ Full Stack Development - Webar X +

<« C & awsamazoncom/a ® % O @ incoanito

ContactUs Supportv Englishe My Account> Signin Create an AWS Account

AWS Amplify Overview Tools + Features ~ Pricing Getting Started Resources ~ Customers

« Front-End Web & Mobile

AWS Amplify

Build full-stack web and mobile apps in hours. Easy to
start, easy to scale

Build an app with Host a web app
AWS Amplify with AWS Amplify

Figure 8.16: AWS Amplify main page

Please follow the form requirements that you will see after clicking. The form is the
same as in Figure 8.17:

204 Next.js Cookbook

awg

Sign up for AWS

Root user email address
Used for account recovery and some administrative

new AWS account. functions -

Explore Free Tier products with a

To learn mare, visit aws.amazon.com/free.

@

PadloE 5
I

‘ Sign in to an existing AWS account ‘

AWS account name

Choose a name for your account. You can change this
@ name in your account settings after you sign up.

Figure 8.17: Registration form for the AWS

Choose the® sign in" button if you already have an AWS account. Choose the “Get
started” button from Figure 8.18 to create the new project:

A

AWS Amplify

Fastest, easiest way to develop mobile and web apps that scale.

VR &= 4

AWS Amplify is a set of products and tools that enable mabile and front-end web

developers to build and deploy secure, scalable full-stack applications, powered by AWS.

Figure 8.18: The first screen of the AWS Amplify

Choose "Build App" and you will be led to the page with application name selection.
Provide the name in the form and click confirm.

Deploying Next]S project to production 205

Get started with Amplify Studio

App details

App name

Amplify Studio is a visual development environment for building full-stack web and mobile apps. With Studio, you can quickly build an
app backend, create Ul components, and connect a Ul to the backend with minimal coding. Studio exports all Ul and infrastructure
artifacts as code, so you can maintain full control over your app design and behavior. Learn more [

| cookbnuH

Confirm deployment

Figure 8.19: Form to choose the project name

After all preparation is over you will see all green stages passed as in Figure 8.20:

y A\\\

« Initializing backend environment...

Full-stack CI/CD

A feature-branch workflow for deploying your frontend and backend in a single
workflow. Supercharge your workflow with PR previews and pattern-based branch
deployments.

Build 2 atcty tiaverien | [<
F oY
©
verty
[
proviien | vt | mm | el | vy
@D ikl s nnilidly oo repleted Dawelasd ¥
» Cloning repasttory ®
+ gackena @
» Froatend @

Figure 8.20: AWS Amplify status check

206 Next.js Cookbook

Before we connect the repository we need to figure out how to use the admin area
in the amplify. Use the "Backend environment’ tab and click on the "Launch Studio®

button like in Figure 8.21:

Hosting environments Backend environments

Ihis tab lists all backend environments. Each backend environment is a container for all of the cloud capabilities added to your app such as API, auth, and storage.

stagin
i

Continuous deploys not set up.

— Deployment status

@ Deployment completed 12/28/2022, 2:51:39 PM
No enabled categories.

Launch Studio

Avisual interface for managing your
backend outside the AWS console.

Figure 8.21: Backend environment tab

In the admin area you will see the screen provided in Figure 8.22. Let us do some
research on what possibilities it has:

A\ Amplify Studio cookbook > staging ¥ Localsetup instructions

@ Home

Welcome back to cookbook's
. staging environment

& User management
B File browser

Desisn Things to do next

4 Ullibrary

2 5 &P

& Authentication Data model View and edit app content Configure log in and sign up Accelerate Ul development
A Iterate on your app's data model. Create Use our content editor to create new records or Configure password-protected login for your app or Export Ul designs made in Figma to clean React
& Storage relationships between models and set up manage existing ones. leverage 3rd party authentication providers, code. Bind U to backend data.

authorization rules.

[cratedatamoiet | Manage app content Enable authentication

™) Functions
23 GraphQL API
@ RESTAPI
i Analytics

Q Predictions

0 Notifications Deployment activity
Q 1
Category v Timestamp v status v Reason v
amplify-cookbook-staging-135139 12/28/2022, 252:10PM © CREATE_COMPLETE
amplify-cookbook-staging-135139 12/28/2022, 251:40 PM © CREATE_IN_PROGRESS User Initiated
Create backend 12/28/2022, 2:51:36 PM © COMPLETED

Figure 8.22: AWS Amplify admin area

In the left panel we will introduce the elements that will be required to cover the
topic of this chapter. There are way more opportunities provided by AWS Amplify,
but we can’t cover all of them in the scope of this book. But you can explore the

possibilities yourself:
¢ Content: this element will be required to create content for your application.
This will led us to the Data element because we need the data structure to

Deploying Next]S project to production 207

store the content. All data use the same rules as any database (relations,
tables.)

¢ Authentication: this element will add a possibility to authenticate users in
several ways, and the users are connected to the User management element.

e UI Library: this element is required to create forms on the page to manage
data in the database

Creating the data models for the application

After clicking on the Data element in the right panel we will be led to the data UI
part where we can visually create the schemas. The schemas after creation will be
automatically converted to GraphQL schema. Click on the "Add model" button to
create a new model:

Data modeling ©oestoyed
(& GraphOL API settings

4+ Add model

Figure 8.23: Add model button to create a new model

In the form that will be opened after that we need to add a name and set up the data
fields that will exist in this model like in Figure 8.24:

+ Add model
O | Articles X
Field name Type
id
title String v | X
description String v
text String v
published Boolean v
+ Add a field

Figure 8.24: Data model example

Click the "Save and Deploy" button to create the data model in your project.

208 Next.js Cookbook

Creating an authentication flow with AWS

Next what we need is to set up the authentication. We will use simple authentication
with email and password, but we can connect social medial login as well. In the
Authentication menu element, we will not change anything. Just click the ‘Deploy"
button and wait until the end of the process:

Authentication

Configure how your users log in and sign up to your app.

© Start from scratch Reuse existing Amazon Cognito resources
Set up a new user directory with sign-in and sign-up Import your existing User Pools and Identity Pools as auth
mechanisms. mechanisms.

1. Configure login

Add login mechanisms
At least one selection among Email, Username, or Phone number is required. This cannot be modified later.

¥ Email

Enable your users to sign in with their email address. Email login is protected by password challenge.

Remove Email login
Add legin mechanism ¥

P Multi-factor authentication

2. Configure sign up
Select which attributes you require from your customers.

Add attribute ¥

P Password protection settings

B Verification message settings

oasa
Figure 8.25: Authentication setup in AWS Amplify

After that we can manage users in the user’s area as in Figure 8.26:

User management

Create, view, and manage users and groups for your application.

Users Groups

Users =

Q 1

Email Created Date Status

test@test.com December 28, 2022 4:42 PM FORCE_CHANGE_PASSWORD

Figure 8.26: User management area in AWS Amplify after authentication deploy

Deploying Next]S project to production 209

Adding data in the admin area

In the Content area we can create new data by selecting the table in the list. For the
test, we can also auto-generate content by pressing the "Auto-generate seed data’
button. We will generate 10 rows for the Articles table. In Figure 8.27, you can see the
result of the generation process:

Content

[Select table: | Articles ¥

Articles (10)
a

title
consecteturfugiatsintcomm
estsintsintenimre
culpacillumdolor
adipisicingexerc
occaecatnostrud
admollitveniamanimvel
officiasitnonestincidi
sintcillumquiadipisicingte

deseruntexduisaliqualab

® ® ®© 6 ®© O OO O6 6

nisivoluptatequisexsitvolu

Manage your app's content. Select a table to view and edit your app data.

description
dodoloripsummollit
nullaesseexvelitveniami
adeiusmodnullaaut
reprehenderitsintconsecte
ullamcoconsequatadipisicinge
irureincididuntaddese
laboreproidentcillumfugi
deseruntcommodoullam
deserunteiusmodmollitidmagn

consequatelitetauteofficia

text
commodosuntoccaecat
minimelitlaboree
aliquipconsequatindocommodoi
suntincididunttemp
aliquipipsumali
laboreconsectetur
consequatirureestpariatu
suntipsummollitparia
pariaturreprehenderiteiusm

adipisicingnoncons

v

1

published v
true
true
true
false
false
true
true
false
true

false

Figure 8.27: Result of generating rows for the Articles table

Using cloud functions for application

To start using the AWS Functions in your project that are wrapped with Amplify we
need to install Amplify CLI to your computer first. Use the command from Figure

8.28 to install Amplify:

npm 1 -g @aws-amplify/cli

Figure 8.28: Command to install Amplify CLI to your computer

Next, we need to configure the Amplify project to be connected to our local project
with the command from Figure 8.29:

210 Next.js Cookbook

amazon configure

Figure 8.29: Command to configure Amplify

The name of your AWS zone can be collected from the interface like shown in Figure

8.30:

L3 & @

US East (N. Virginia)
US East (Ohio)
US West (N. California)

US West (Oregon)

Asia Pacific (Mumbai)
Asia Pacific (Osaka)

Asia Pacific (Seoul)

Asia Pacific (Sydney)

Asia Pacific (Tokyo)

Canada (Central)

ap-south-1

ap-northeast-3

ap-northeast-2

ap-sou

ap-northeast-1

ca-central-1

Figure 8.30: Zone name that will be required in the configuration

We use Europe(Frankfurt) means the zone name will be eu-central-1. After that, you
will be led into the user check process. Follow the guide and in the form press the
"Next " button and do not change anything. In the end, you will be on the page where
the access key can be collected like in Figure 8.31:

Deploying Next]S project to production 211

1 2 3 4 °

@ Success
You successfully created the users shown below. You can view and download user security credentials. You can also email users
instructions for signing in to the AWS Management Console. This is the last time these credentials will be available to download. However,
you can create new credentials at any time.

Users with AWS Management Consele access can sign-in at: https://876682287772 signin.aws.amazon.com/console

& Download .csv

User Access key ID Secret access key

» webconsult ekb@gmail.com A, (] 7YY Show
Figure 8.31: Page with access id

Grab this ID and provide it in your console wizard as shown in Figure 8.32:

Specify the AWS Region
region:
Specify the username of the new IAM user:
user name:
Complete the user creation using the AWS console

Press Enter to continue

Enter the access key of the newly created user:
accessKeyId: +*$*******+*********I

Figure 8.32: Access Key provided in the CLI wizard

Please also provide the secret key from Figure 8.31 as a reply for the next question
in CLL

Next, we will initialize the amplify application with the command provided in
Figure 8.33, please enter this command in the application root, that will be helpful in
the future:

amplify init

Figure 8.33: Init the Amplify project

212 Next.js Cookbook

In the CLI wizard you will need to enter the same information that was required
previously as region, access and secret keys. You will see the success message from
Figure 8.34 when the process will be finished:

Initialized provider successfully.

"amplify status" will show you what you've added already and if it's locally configured or deployed

"amplify add <category>" will allow you to add features like user login or a backend API

"amplify push" will build all your local backend resources and provision it in the cloud

"amplify console" to open the Amplify Console and view your project status

"amplify publish™ will build all your local backend and frontend resources (if you have hosting category added) and provision it in the cloud

Try "amplify add api" to create a backend API and then "amplify push" to deploy everything

Figure 8.34: Successful init of Amplify

Now, we need to pull the Amplify configuration into our project. To do that grab the
command in your Amplify UI from the button, that is shown in Figure 8.35:

b Local setup instructions (_:f:) @

Pull the latest into your source code

amplify pull --appld dhwf2tzOmllzl --enviame s

@ View Amplify CLI installation instructions

Figure 8.35: Command to pull the project configuration

For the question about source code please use the “pages" folder as the source for the
NextJS app in this folder. After the configuration is finished you will see that project
now have 2 more folders on the pages and one more folder in the root. In the source,
we can find Amplify GraphQL models and the UI components to manage the data.
It is the scaffolded forms that will help us to create and update data:

Figure 8.36: New folders in the pages folder

Deploying Next]S project to production 213

As the simple example of Lambda creating (the more complex is out of scope for this
book, but you can learn it yourself in any AWS resource) we will create a trigger, that
will update table on each data update in Articles. To do that we need to create the
function by typing the command from Figure 8.37:

amplify add function

Figure 8.37: Command to make the function

Make selections from Figure 8.38 to complete function creation:

Select which capability you want to add:
Provide an AWS Lambda function name:
Choose the runtime that you want to use:

Choose the function template that you want to use: Lambda trigger
What event source do you want to associate with Lambda trigger?
Choose a DynamoDB event source option

Figure 8.38: Selections to complete the function creation

After that, in your AWS console you can choose lambda and your function will
appear in the list like in Figure 8.39:

Lambda » Functions
Functions (12) Last fetched now
Q Filter by tags and attributes or search by keyword 12> @
O Function name ¥ Description v Packagetype ¥ Runtime v Last modified v
[m] cookbookd7c0173e-staging E Zip Node.js 14.x 1 hour ago
O amplify-cookbook-staging--UpdateRolesWithI DPFuncti-ZnngGuLDcbAl E Zip Nodejs 14.x 20 hours ago
m} amplify-login-define-auth-challenge-Oeb7clet - Zip Nedejs 12.x 3 months ago
[m] amplify-login-define-auth-challenge-3827f474 E Zip Node.js 16.x yesterday
O amplify-login-create-auth-challenge-Ocb7c el E Zip Nedejs 12.x 3 months ago
[m] amplify-login-create-auth-challenge-3827f474 E Zip Nedejs 16.x yesterday
[m] amplify-cookbook-staging-1351-UserPoolClientLambda-REGNP IMHONIZ E Zip Node.js 14.x 20 hours ago
O amplify-login-custom-message-Oeb7cle1 E Zip Nedejs 12.x 3 months ago
[m] amplify-login-verify-auth-challenge-Oeb7ce1 E Zip Nedejs 12.x 3 months ago
[m] cookbook830592a6-staging E Zip Node.js 14.x 4 minutes ago
1

Figure 8.39: Lambda functions list

214 Next.js Cookbook

Click on the name and you will get inside of this function like in Figure 8.40:

Lambda » Functions » cookbookB830592a6-staging

cookbook830592a6-staging

(@ This function belongs to an application. Click here to manage it.

¥ Function overview info

cookbook830592a6-staging

@ Layers Q)

-+ Add trigger

Figure 8.40: Lambda function screen

As you can see the trigger is already attached to the Lambda. To make changes in the
other table we need to create one. Please follow the previous instructions and create
anew table in the Amplify console to have it like in Figure 8.41:

B ActionCounter b 4
Field name Type
id
counter Int v
=+ Add a field

=+ Add a relationship

Figure 8.41: New table to store the data

In this table we will create one row that we will change on each article update. After
that, we will create an element using the DynamoDB tab as we need to get the ID of
the element that is not shown in Amplify panel. Choose DynamoDB in your AWS
console and follow the DynamoDB link to get to the page from Figure 8.42:

Deploying Next]S project to production 215

DynamoDB » Items » ActionCounter-7dc3n2n27bgddefjtawzx7wuny-staging
Tables (5) « ActionCounter-7dc3n2n27bg4defjtawzx7wuny-staging

Any table tag v ‘ @ Autopreview View table details

| QU Find tables by table name ‘

v Scan or query items

1 [c]
| 0san | | 0 aumy \
o 7de3n2n27bg4defitawzx7wuny-
i Select a table or index Select attribute projection
Table - ActionCounter-7dc3n2n27bg4defitawzxTwuny-staging v ‘ ‘Ail attributes v
AmplifyDataStore-
7dc3n2n27bg4defjftawzx7wuny-
staging
¥ Filters
Articles-

7dc3n2n27bgAdefjtawzxTwuny-

MyModelTypeTable

Todo-
2a32tignx5hflde3hkia2ztokg-
dev

@© Completed. Read capacity units consumed: 2 ‘

1 @R
id v _typena.. ¥ | _lastChangedAt ¥ | _version ¥ counter v |
O bfd 1f60b-1c14-4ec3-Bdff-aaff6c1759ac ActionCounter 1672310573069 1 675 2

« >

Figure 8.42: Action counter table in AWS console

Crate an element with any number inside. In this tab from Figure 8.42, we will need
an element id and the table id that we will use in our Lambda function. Go back
to the Lambda function panel. Here we will need to add the permission to connect
to DynamoDB directly from the function. Please note that we are doing this only for
example purposes, please use an API way to get the data from the Database.

In the Configuration | Permission tab of the Lambda function panel please click on
the name of the permission to change it shown in Figure 8.43:

Code Test Monitor Configuration Aliases Versions

General configuration :
9 Execution role

Triggers

Role name
Permissions
cookbookLambdaRoleccf23626-staging [4

Destinations

Figure 8.43: Configuration | Permission tab of the function

Click add permission and policies as shown in Figure 8.44 and find the DynamoDB
full access policy to add the permissions:

216 Next.js Cookbook

Trust i Tags (2) Access Advisor Revoke sessions

Permissions policies (3) o o Bt Remove
You can attach up to
Q, Fitter policies by property or policy name and press enter Create inline policy
Policy name (&' - Type - Description
W AmazonDynamoDBFullAccess AWS managed Provides full access to Amazon Dynar
amplify-lambda-execution-policy-Articles Customer inline

lambda-execution-policy Customer inline

Figure 8.44: Adding the database permissions to the function

In the Lambda function panel please choose the Code tab as shown on Figure 8.45, in
the code field we will place the function code:

Lambda > Functions } cookbook830592a6-staging

cookbook830592a6-staging

@ This function belongs to an application. Click here to manage it.

¥ Function overview info

cookbook830592a6-staging

£ Llayers 0)
=2
DynamoDB
~+ Add trigger
Code Test Monitor Configuration Aliases Versions

Code source info

File Edit Find View Go Tools Window

13

Q hin | indexjs x Execution results X
= - 1 const AWS - require(’aws-sdk’);
T - B
3 GoFookanc s o 2 const docClient = new AWS.DynamoDB.DocumentClient(};
e » (01 node_modules 3
2) 4 const random = Math.floor(Math.random() * 1868);
=) eventgson .
“] indexgs & const params = {
7 TableMame: "ActionCounter-7dc3n2n27bgddef]tauzxTuuny-staging”,
4] package-lockson 8 key:
S J 35 prUO0-acle-deca-Bar st roci7ssac
yar.Jock 11 UpdateExpression: "set #counter = :counter”,
12 Expressionsttributeliames: {
) e

Figure 8.45: The code tab for the lambda

Deploying Next]S project to production

217

Use the code from Figure 8.46 to your Lambda function in the code field:

const AWS = require('aws-sdk');
const docClient = new AWS.DynamoDB.DocumentClient();

const random = Math.floor(Math.random() * 1000);

const params = {
TableName: "ActionCounter-<your id>",

Key: {
id : '<your item id>'
})
UpdateExpression: "set #counter = :counter",
ExpressionAttributeNames: {
'#counter': 'counter',
}7

ExpressionAttributeValues:{
":counter": random
}7
ReturnValues: "UPDATED_NEW"
s

async function updateItem() {
console.log(random);
try {
await docClient.update(params).promise();
} catch (err) {
return err;
X
}

exports.handler = async (event) => {
try {
const result = awailt updatelItem();
console.log(result);
return { body: 'Successfully updated item!' }
} catch (err) {
return { error: err }

b

Figure 8.46: The function code

Now you need to press on the Deploy button to deploy the function to the cloud as
shown in Figure 8.47:

Code source info

« File Edit Find View Go Tools Window Deploy Changes not deployed
Q A P =] index.js x Execution results *
= ale 1 const AWS - reguire('aws-sdik');

Figure 8.47: Deploy function to the cloud

218 Next.js Cookbook

After successfully deploying you can test the function by pressing on the Test button.
To see the result open the DynamoDB console(or Amplify content) and check that
number is changed. Now each time we do changes in the Article table this function
will trigger changes in the other table.

Reuse cloud functions with layer
functionality

For some Lambda functions we probably could require third-party npm packages to
work with services or with data or, for example with dates. For the current example,
we will take the Moment]S library and create a Layer with it to reuse it in any
Lambda function.

The layer is a dependency container that can be reused in any Lambda function.
That means that we do not need to implement dependency and install it in any
function but do it once and then reuse it. We also have a limitation so in AWS we can
create not more than 5 layers that can be reused.

To create the layer please create the nodejs folder in any place on your hard drive
(I will put it into C:\temp\nodejs). In this folder please init the empty npm project
as usual and then add the moment js package with the command from Figure 8.48:

npm install --save moment

Figure 8.48: Command to install moment]S

Your layer project should look like provided in Figure 8.49:
05 (C:) » temp > nodejs

Mame

B8 node_modules

B package

B package-lock

Figure 8.49: A file structure for the Layer

Zip the nodejs folder and open the AWS Lambda console. Click on the Layers menu
element to open the Layers UI admin interface like in Figure 8.50:

Deploying Next]S project to production 219

AWS Lambda

Dashboard
Applications

Functions

Additional resources

Code signing configurations
Layers

Replicas

Related AWS resources

Step Functions state machines

X Lambda » Layers

Layers (0)

Last fetched now

Create layer

Q Filter layers

|

Name v Version

Compatible runtimes Compatible architectures

There is no data to display.

Figure 8.50: Layers menu

As you can see from Figure 8.50 there is a ‘Create Layer” button. Press it to create
your new layer. Fill the form as provided in Figure 8.51 to create your first Layer:

Lambda > Layers » Create layer

Create layer

Layer configuration

Name

‘ moment

Description - optional

shared dependency

© Upload a zip file

() Upload a file from Amazon S3

[1 Upload nodejs.zip (1.1 MB)

For files larger than 10 MB, consider uploading using Amazon 53.

Compatible architectures - optional Info

Choose the compatible instruction set architectures for your layer.

x86_64
[[] arm64

Compatible runtimes - optional Info
Choose up to 15 runtimes.

‘ Runtimes

Nodejs 14.x X

License - optional Info

Figure 8.51: Create layer form

220 Next.js Cookbook

Now enter the lambda function that we created before and scroll to the Layers list
selection as in Figure 8.52:

Layers me [Cea |[adaaiorer

Merge order Name Layer version Compatible runtimes Compatible architectures Version ARN

There is no data to display.

Figure 8.52: Add layer group

Click the "Add layer’ button from Figure 8.52 then choose Custom layers and find
your first layer in the list like in Figure 8.53:

Add layer

Function runtime settings

Runtime Architecture

Node.js 14.x xB86_64

Choose a layer

Layer source Info
Choose from layers with a compatible runtime and instruction set architecture or specify the Amazon Resource Name (ARN) of a layer
version. You can also create a new layer.

O AWS layers © Custom layers (O Specify an ARN
Choose a layer from a list of Choose a layer from a list of Specify a layer by providing the
layers provided by AWS. layers created by your AWS ARM.

account or organization.

Custom layers
Layers created by your AWS account or organization that are compatible with your function's runtime.

Choose A

Your layers

moment
shared dependency Cancel

Figure 8.53: Adding the layer to lambda function

Press the “Add” button and switch to the “Code" tab. We will need to make some
changes there.

Deploying Next]S project to production 221

The code changes can be observed in Figure 8.54:

const moment = require('moment');
const randomCall= moment().unix();

const params = {
TableName: "ActionCounter-<your id>",

Key: {
id : '<your id>'
b
UpdateExpression: "set #counter = :counter",
ExpressionAttributeNames: {
'#counter': 'counter',
3,

ExpressionAttributeValues:{
":counter": randomCall

1
ReturnValues: "UPDATED_NEW"

Figure 8.54: Code updates for the Lambda function

As you can see we import the function from the package that is not related to
the current function. But we can do it because of the Layer functionality and the
Moment]S is connected to it.

Finishing the backend with amplify

Let us summarize what we have now in the AWS Amplify:
e We have an articles list that we can show in our application

¢ We have a login system that can be implemented in the app
So to make a conclusion we need to implement this functionality in our application

To do it we need to add Amplify to our pages. The documentation for the Next]S
is not so clear at the moment of the book creation so probably something will be
corrected. If not then please follow this guide to easily implement Amplify into the
frontend part.

First, we need to install dependencies into the project that will help us to create a
connection. Use Figure 8.55 to install the dependencies:

222 Next.js Cookbook

yarn add @aws-amplify/core
yarn add @aws-amplify/datastore

npm install @aws-amplify/core
npm install @aws-amplify/datastore

Figure 8.55: Dependencies for Amplify

After that we need to push everything we have into the Amplify to create the
configuration file. Use “amplify push” to push changes to the cloud. Please sure

that file "aws-exports.js appeared in the pages folder. Now, we can connect to the
Amplify.

Open the _app.page.tsx file and put code from Figure 8.56 before component:

import Amplify from '@aws-amplify/core';
import config from '../pages/aws-exports';
Amplify.configure({

...config, ssr:

Ielg

Figure 8.56: Code to implement Amplify

Now we can call Datastore to retrieve data:

impoft { DétaStore } from '@aws-amplify/datastore’;
import { Articles } from '../models/index’;

const ListPage: NextPage = ({ data, notFound }: any) => {
useEffect(() => {
const models = DataStore.query(Articles, c => c.published.eq()
models.then(result => {
console.log(result);
1)
I (1)

I

export default ListPage

Figure 8.57: Code to retrieve Articles data

Deploying Next]S project to production 223

Use Figure 8.57 to get the data from datastore. Change the data in component to the
result of the query:

import type { NextPage } from 'next'

import ArticlelListElement from '../../ui/molecules/ArticlelListElement’;
import { Fragment, useEffect, useState } from 'react’';

import { selectAuthState } from '../store/authSlice';

import { useAppSelector } from '../hooks';

import { DataStore } from ‘'aws-amplify';

import { Articles } from '../models';

const ListPage: NextPage = () => {
const isLoggedIn = useAppSelector(selectAuthState);
const [data, setData] = useState([])

useEffect(async () => {

const models = await DataStore.query(Articles, c => c.published.eq(true));
setDate(result);
Fls
return (
<section>
<hl>Articles list</hl>
{

data?.map((item: any) => {
return <Fragment key={item.id}>
<ArticlelListElement
isLoggedIn={isLoggedIn}
article={item}
=
</Fragment>
1)
}
</section>
)
+

export default ListPage

Figure 8.58: Updated articles list component

224 Next.js Cookbook

Now your list will look like in Figure 8.59 with data from Amplify Content UI:

NextJS. Cookbook

Home Articles About

Login

Articles list

admollitveniamanimvel 1234321
irureincididuntaddese

estsintsintenimre
nullaesseexvelitveniami

consecteturfugiatsintcomm
dodoloripsummollit

deseruntexduisaliqualab
deserunteiusmodmeollitidmagn

culpacillumdolor
adeiusmodnullaaut

2022, All rights reserved

Figure 8.59: Data list from Amplify datastore

Next we need to update the article page as shown in Figure 8.60:

// same code as before

import { useEffect, useState } from 'react’

import { Articles } from '../models’

import { DataStore } from '@aws-amplify/datastore’;

const ArticlePage: NextPage = ({ notFound }: any) => {
// same code as before
const [data, setData] = useState({});

// same code as before

useEffect(() => {

const models = DataStore.query(Articles, router.query.pid);

models.then(result => {

setData(result);

1)
o0
return (

<section className={styles.section}>

// same code as before
<div>
<ArticleDate date={data.updatedAt} />
</div>
</div>
// same code as before

)
¥

export default ArticlePage

Figure 8.60: Article element change after update

Deploying Next]S project to production 225

Now we can see the current article as you can observe in Figure 8.61:

Next)S. Cookbook

Home Articles About

Login

— admollitveniamanimvel1234321

aboreconsectetur
p022-12-29T11:40:33.985Z

2022. All rights reserved

Figure 8.61: Current article from datastore

Now we can update the login. To do that let us add the dependency using the
command from Figure 8.62:

| XN
yarn add @aws-amplify/auth
// or if npm

npm 1 @aws-amplify/auth

Figure 8.62: Commands to add auth dependency to the project

As you remember we made our login system with a strategies pattern and to add the
new kind of authorization we simply need to add a new strategy and use it. Please
add the Strategy to the configuration file first, the name of the file is ~ /pages/api/
core/configuration.ts’. Grab the code from Figure 8.63 for the update:

import { LoginWithGQL, LoginWithMock, LoginWithAmplify } from "./login-strategy"
// same code as before
const LoginStrategies = {
[LoginStrategiesNames.MOCK]: new LoginWithMock(),
[LoginStrategiesNames.GQL]: new LoginWithGQL(),

[LoginStrategiesNames.AMPLIFY]: new LoginWithAmplify(),
}

const loginType = LoginStrategies[LoginStrategiesNames.AMPLIFY]

export { Configuration, loginType, UserBuilderMethods }

Figure 8.63: Configuration update

226 Next.js Cookbook

Now, in the strategies file (./login-strategy.ts) we need to add a strategy class
like in Figure 8.64:

// same code as before
import Auth from "@aws-amplify/auth";

class LoginWithAmplify implements ILoginStrategy {
public async login(user: string, password: string) {

let loginState = { isLoggedIn: false, token: '', userProperties: [] };

try {
console.log({user, password});
const loginStateCall = await Auth.signIn(user, password);
if (loginStateCall.Session) {

loginState = { isLoggedIn: true, token: loginStateCall.Session, userProperties: [] };

} catch (error) {
console.log('error signing in', error);
}
return loginState;
)
}

// same code as before

export { LoginContext, LoginWithMock, LoginWithGQL, LoginWithAmplify }

Figure 8.64: Login with Amplify strategy

And that is it!! Now after login using the credentials of the user from the Amplify

User panel we will be directed to the page where we can see elements only for
authorized users:

Next)S. Cookbook

Home Articles About +add ar

Articles list

admollitveniamanimvel 1234321
irureincididuntaddese

estsintsintenimre
nullaesseexvelitveniami

consecteturfugiatsintcomm
dodoloripsummollit

deseruntexduisaliqualab
deserunteiusmodmellitidmagn

culpacillumdolor
adeiusmodnullaaut

& & a a a
2 2 £ 2 2
2 2 £ 2 2
" L w " w

2022. All rights reserved

Figure 8.65: Articles after authorization

Deploying Next]S project to production 227

Host the application in the cloud and the
first run

We are ready to launch our application in the cloud. To do that please put your
project into any GIT services that you like (Github, Gitlab, BitBuket, and the like).
We will need to connect our Amplify project with it. To connect the application with
GIT please follow Figure 8.66:

Allapps > cookbook

cookbook

The AWS Amplify Console is the control center for your full-stack app inside the AWS Management console. Set up continuous deployment and hosting, create a full-stack app in Amplify Studio,
and manage full-stack environments.

Hosting environments Backend environments

Host a web app

Connect your source code from a Git repository or upload files to host a web app in minutes

GitHub Bitbucket GitLab

AWS CodeCommit Deploy without Git provider

Figure 8.66: The main page of Amplify app

Choose the GIT provider where your project code is located.

Review

Repository details

Repositary service Branch environment
GitHub staging

Repository Application root
ataztech910/cookbook

Branch

main

App settings

App name Framework
Nexts - SR

Build image

Using default image Build settings

Auto-detected settings will be used

Environment variables

USER_BRANCH: staging

Cancel Previous Save and deploy

Figure 8.67: Finishing repository connection

228 Next.js Cookbook

After you finish the choosing repository just click ‘Save and deploy" from Figure
8.67. From the first Attempt, your build probably will fail. It is because of the non-
documented issue with Amplify and Sentry. We need to add some environment
variables to make it work in the Amplify environment. Refer to the Figure 8.68 to
solve this issue:

Allapps > cookbook > App settings: Environment variables

Environment variables

Environment variables are key/value pairs that contain any constant values your app needs at build time, for instance database connection details or third party API keys. Learn more [

Environment variables
1
Variable Value Branch
AMPLIFY_NEXTJS_EXPERIMENTAL_TRACE true All branches
SENTRY_AUTH_TOKEN T All branches
_LIVE_UPDATES [{"name""Amplify CLI""pkg":' @aws-amplify/cli®, "type":"npm","version""latest"}] All branches
USER_BRANCH staging main

Figure 8.68: Amplify environment variables

You can collect your auth token from Sentry using this link: https://sentry.io/
settings/account/api/auth-tokens/"

In Figure 8.69 you can see the example of success deploy (all steps should become
green). And also the link to the frontend can be collected on the left side from Figure
8.69:

main
Continuous deploys set up with staging backend (Edit)

.se
Provision Build Deploy
Last deployment Last commit Previews
https:// ..amplify i}
nttps.//main. amplifyzpe.com (3 12/29/2022, 11:27:32 PM Merge pull request #8 from ata... | alcca?7 | Disabled

GitHub - main [2

Figure 8.69: Success deploy and link to frontend

Click this link and you will be led to the hosted project in the staging environment
like in Figure 8.70:

Deploying Next]S project to production 229

&€ > C @& maindhwif2z9m11z1.amplifyapp.com

Next)S. Cookbook

Home Articles

About Login|

Articles list

admollitveniamanimvel1234321
irureincididuntaddese

estsintsintenimre
nullaesseexvelitveniami

consecteturfugiatsintcomm
dodoloripsummollit

deseruntexduisaliqualab
deserunteiusmodmallitidmagn

culpacillumdolor
adeiusmodnullaaut

2022, All rights reserved

Figure 8.70: Frontend, hosted to the Amplify

Conclusion

In this chapter we made one of the most complicated and important parts - delivery
your application to the end user. In the real life, you can choose any cloud solution
that exists on the market. Any of them will have the same way of working and
delivery, so if you know how to deliver to AWS, you can be sure that there will be
not a big deal to switch to any other solution. Please note that Amplify today is the
only all-in-one solution but you might not need the serverless solutions and backend
from AWS.

In the next chapter, we will make a final touch and make our software perfect in case
of optimization and SEO.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com
El

e
Elu

J

CHAPTER 9

Mastering

optimization tools
for Next]S

Introduction

Itis always difficult to make the perfect even better. But we will try to improve Next]S
across various parameters such as performance and optimization. Additionally, since
we leverage the full power of server-side rendering, we can enhance our application
for SEO purposes.

Structure
e How to get more performance from superfast NextJS
o Using dynamic load for the client side to reduce the first load
o How to optimize images with components
e How to bake server-side components
e Creating SEO-friendly optimization

e Conclusion

232 Next.js Cookbook

Objectives

This is the final chapter of the book and here we will try to introduce everything
that will help you to make your project a little bit better. All the tools that we will
introduce not have a special group so I decided to put them in the very last chapter.
The reasons are:

e Itis a helper but not one of the main parts of development
e There is no special group of purpose for them

¢ One can be sure that you are tired of so much information at the end of the
book and these topics make you have fun with Next]S

How to get more performance from
superfast Next]S

Next]S is a very fast framework and the reason for the performance is a not-usual
list of build possibilities. We can configure the project to the strict requirements and
get the exact results of performance that we need and expect. But what if there is
a way to make it work faster? Not extremely faster but have a 10 or 15 percent of
performance increase. There is a way to help you in some cases and let us look at
them.

Using dynamic load for the client side to reduce
the first load

NextJS perfectly implements one of the exciting features of modern JavaScript that
allow us to defer the loading of the modules separately. This practice can divide
bundles into smaller chunks that can eventually improve site performance.

Let us check what can be a drawback of performance in common projects:

e Web apps that require user interaction load a whole bunch of components
even if they are not required at the current moment.

¢ Ahuge codebase creates a quite big bundle size and the compilation process
is really slow because of the big number of components.

Using dynamic components led to the process called code splitting that in the
end land us to reduce the main bundle size and split it into several files that load
asynchronously.

Mastering optimization tools for Next]S 233

For example, in our project, the top navigation bar will be loaded statically as you
can see in Figure 9.1:

import styles from '../../styles/layout.module.scss'
import NavigationBar from '../../ui/molecules/NavigationBar

export default function Layout({ children } : Partial<any>) {
const navigation = [
{title: 'Home', link: '/'},
{title: 'Articles', link: 'sarticles'},
{title: 'About', link: '/about'}
]
return (
<>
<header className={styles.header}=Next]S. Cookbook</header=
<nav=>
<NavigationBar navigation={navigation} />
</nav>
<main>{children}</main>
<footer className={styles.footer}>2022. All rights reserved</footer>
</>
)
}

Figure 9.1: Example of the static load of the NavigationBar component

In this case, the page will render all components before showing them on the page.

To make the navigation component dynamic use the code from Figure 9.2 to improve
the component:

import dynamic from 'next/dynamic';
import styles from '../../styles/layout.module.scss

export default function Layout({ children }
const navigation = [
{title: 'Home', link: '/'},
{title: 'Articles', link: '/articles'},
{title: 'About', link: '/about'}
13

: Partial<any=) {

const NavigationBar = dynamic(() => import('../../uil/molecules/NavigationBar'),
{ loading: () => <p=>Loading navigaion...</p> });

return (
<>
<header className={styles.header}=Next]S. Cookbook</header>
<nav>
<NavigationBar navigation={navigation}/>
</nav=
<main={children}</main=

<footer className={styles.footer}>2022. All rights reserved</footer>
</>

)
}

Figure 9.2: Dynamic navigation component

234 Next.js Cookbook

As you can see in Figure 9.2 the component is not loaded with the component but
the asynchronous load on the component init. That simple optimization will lead to
a various number of improvements. Be sure that in the small projects with not a bit
number of components on the page you probably will not see any improvements
visually, but for the bigger ones, this simple change will be a great advantage. This
will solve the following:

e Conversion rate improvement. Your site will load faster and more data at
one time.

e We will decrease the bounce rate which will simultaneously lead to better
performance.

e We will improve the time to interaction time that will also improve the site.
Next.js optimizations can reduce the time it takes for users to start interacting
with your web application. A faster TTI leads to a better user experience, as
users can quickly access the content and features they need.

All these improvements are not only about performance. It is also about the ranking
of the site in the search engine for the robots these metrics matter and we should

always keep in mind that the web application’s purpose is not only for internal use
and dashboards.

Let us play around with this feature to see how else we can use it. We can create the
wrapper that will trigger lazy loaded in the component loaded event. That means
that we will expect the promise of the component loading and then send it to the
container like in Figure 9.3:

import dynamic from 'next/dynamic’
import styles from '../../styles/layout.module.scss'
import { useState } from 'react';

export default function Layout({ children } : Partial<any>) {
const navigation = [
{title: 'Home', link: '/'},
{title: 'Articles', link: '/articles'}
{title: 'About', link: '/about'}
1

const NavigationBarWrapper = dynamic(
() => import('../../ui/molecules/NavigationBar"').then((component) => component.default)

)

return (
<>
<header className={styles.header}>Next]S. Cookbook</header>
<nav>
<NavigationBarWrapper navigation={navigation} />

</nav>
<main>{children}</main>
<footer className={styles.footer}>2022. All rights reserved</footer>
</>
)
i

Figure 9.3: Lazy loaded wrapper for the component

Mastering optimization tools for Next]S 235

For this case, we can also create the whole logic that will load the required component

by name depending on the route, as an example. In Figure 9.4 you can collect the
code for this example:

import dynamic from 'next/dynamic'

import styles from '../../styles/layout.module.scss'
import { useState } from 'react';

import { useRouter } from 'next/router';

export default function Layout({ children } : Partial<any>) {
const navigation = [
{title: 'Home', link: '/'},
{title: 'Articles', link: '/articles'},
{title: 'About', link: '/about'}
]

const { route } = useRouter();
console.log('query', route);
const isCopy = route === '/articles'? 'Copy' : '';
const NavigationBarWrapper = dynamic(
() => import('../../ui/molecules/NavigationBar'+isCopy).then((component) => component.default)

)

return (
<>
<header className={styles.header}>NextJS. Cookbook</header>
<nav>
<NavigationBarWrapper navigation={navigation} />

</nav>

<main>{children}</main>

<footer className={styles.footer}>2022. All rights reserved</footer>
</>

Figure 9.4: Dynamically change components by the route

In the browser, in case you in the articles page you will see the same as in Figure 9.5:

Next)S. Cookbook

[his is a second navigation Home ‘ Articles About e

IArticles list

admollitveniamanimvel 12343215

irureincididuntaddese

Figure 9.5: Result of dynamically loaded logic

The number of dynamically loaded components doesn't matter. We can load as
many components as we need.

236 Next.js Cookbook

The next thing is that we can manually configure the dynamically loaded component
to be client rendered and pass the SSR configuration. In Figure 9.6 you can observe
the example code of how to do that:

const NavigationBarWrapper = dynamic(
() => import('../../ui/molecules/NavigationBar'+isCopy).then((component) => component.default), {
ssr:

I

Figure 9.6: Configuration for the dynamic component to be client-side rendered

Now the navigator component will be rendered way faster than before as it is not
a part of server-side rendering. This can be used for the components that are not
required to be a part of the content for the SEO (shopping cart or user details for
example).

The last thing that we will check in this topic is the possibility of dynamically loading
third-party libraries. For example, I will take the Axios library and call a fake API
with it to get the result. The example code is located in Figure 9.7:

export default function Layout({ children } : Partial<any>) {

let [response, setResponse] = useState([]);

const api_url = 'https://my-json-server.typicode.com/typicode/demo/posts’;
return (

<>

<header className={styles.header}>NextJS. Cookbook</header>

<nav>

Response is {JSON.stringify(response)}

<button

onClick={async () => {
const axios = (await import("axios")).default;
await axios.get(api_url).then((res) => {

setResponse(res.data);

s

i3s

Click me

</button>

</>
)
I

Figure 9.7: Dynamically load third-party library

Mastering optimization tools for Next]S 237

As you can see we are loading the Axios library only in the place where it is required
to be. Be sure that this example is only the academic way of use, for the real-world
application it will be strange to use it like this, but we will do it only to show you
that it is a possible way of using dynamic load. Figure 9.8 is the result of clicking on
the button:

Next)S. Cookbook
Response is [{"id":1,"title":"Post 1"},{"id":2,"title™:"Post 2"},{"id":3,"title":"Post 3"}]
About

Home Articles

Figure 9.8: Result of clicking on the button where the library loaded by clicking on it

How to optimize images with components

The basic problems that can be met with images for your site can be grouped in the
list like this:

e The format of the image is chosen incorrectly. In some cases, PNG is way
bigger than the same image in JPEG format. On the modern web, it is better
to use the WebP format as it is the most optimized format for the web. You
can find numerous converters on the internet that could help you to translate
images to WebP.

¢ The wrong size of the images led to an increased loading time for the page.
For example, we do not need 4k images for mobile users with a maximum of
1440p screens. We can detect the device and provide the required one. There
are a lot of services that will help you to resize your image to have it for each
required screen size.

¢ The wrong compression of images could be also an issue, so before translating
the image to the WebP and creating the bundle for several resolutions use
any compression service on your image to reduce size. A lot of images are
having information that is not visible to the average human eye, so it is just
there and can be easily removed with compression.

In NextJS there is a special component, that can solve a lot of problems, so we highly
recommend using it.

Let us try to use it, but first, we will get the image in WebP format. After that, we
place the file in the public folder. Use code from Figure 9.9 to insert the image:

238 Next.js Cookbook

L NN

import Image from 'next/image'

import imageExample from '../../public/file_example.webp'
export default function Layout({ children } : Partial<any>) {

return (

<>
<Image
src={imageExample}
alt="user random picture'
/=
</>

Figure 9.9: Insertion of the image using the Image component

This component automatically will create several parameters like width, height, and
dataBlurUrl. This is very important for the CLS metric from the previous chapter. If
you use remotely located images (for example: from S3 or any other file store) please
always put width and height for the component to avoid CLS degradation. Let us
look at the possible properties of the component that can be useful:

e src: here you can provide a statically imported file or string with a URL to
the remote storage.

e layout: string property to configure responsibility for the image. Please
observe possible values for this property.

e intrinsic:itis the default value that renders enough space to use the original
size of the image.

e fixed: fills the parent’s size. Please make sure that the parent element is
having “position: relative" property.

Mastering optimization tools for Next]S 239

e responsive: reacts to parent element width. Make sure your parent container
is having “display: block property.

e loader: this parameter generates a loader element before the image is loaded,
but as a parameter, it can take configuration variables from the Next]S. Check
the example code in Figure 9.10.

¢ placeholder: this parameter will generate a way of loading the image
visually. This parameter has 2 options:

o empty: nothing will be visually shown

0 blur: the image will be blurred until the load is over. You can use
blurDataUrl param to show any other image you want

e priority: this parameter will disable lazy loading and put these images in
the loading queue higher than others.

e quality: this parameter is to manage image quality. The range of it is between
1 and 100. Changing this parameter also affects the image file size, so you can
reduce the quality for the images where you need it to be small but not in
high-resolution.

e sizes: this parameter’s purpose is to set sizes like minimal or maximal width.
This parameter replicates a standard sizes param that is used in HTML IMG
tag.

e loading: this param is configuring a loading type for the image.

0 lazy: default type that loads the image asynchronous

o eager:if this is selected then the image will be loaded synchronously and
hurt performance

0 objectFit: this property replicates the CSS object-fit behavior so you can
select fill cover or contain the same as you would do that with CSS.

0 objectPosition: also replicates the CSS object-position property.

e onLoadingComplete: this is the callback function property. That means that
after the image is loaded we can call some function (for example if more than
10 images are loaded then we can take more data from API)

As you can see using the ‘Image’ component from Next]S is more performant and
configurable. Also, you will need fewer components to work and manage images as
most functionality is already inside.

240 Next.js Cookbook

L NN
import Image from 'next/image'

const customLoader = ({ src, width, quality }) => {
return ‘<url-to-image-server>/${src}?
w=${width}&q=${quality}"

const ImageWithLoader = (props) => {
return (

<Image
src="someImage.webp"
width={300}
height={300}
alt="example image"
quality={80}
loader={customLoader}

/>

Figure 9.10: Image loader example code

How to bake server-side components

This is an experimental feature, so it is required React 18 which will come with Next
13. At the moment of this book creation, the 12th version of Next]S is stable so I
would highly recommend using this one for a while. But let us look into the future
and check what is covered under the newest React and Next]S.

Before we start we need to turn on the feature in the Next]S config using the
configuration object from Figure 9.11:

experimental: {
appDir: s
iy

Figure 9.11: Confiquration for the Next]S

Mastering optimization tools for Next]S 241

Just add this in the configuration in the next.config. js file. We will also need the
latest version of Next]S so please remove the current version and add ~13.0.3. Next
what you will need to do is to rename the pages folder to the app and make huge
reconfigurations of the folders.

If you do not want to break the current project you can also use the example from
Vercel that is located at this link ‘https://github.com/vercel/next-react-server-
components’. It is much better than renaming everything in the current project. This
is what I will do in the next steps to not to break the current project as it has way
much setup that could be broken during reconfiguration.

So the server-side rendered components are the components that are literally stored
and rendered on the server.

What this feature can give us in the future:

e Direct access to the database that makes fetching faster (can be used for non-
critical components that can have direct access to DB).

e The Server side components are not included in the bundle so you cannot
load them on the page during the load stage. That also means that we could
not use any client-side interactivity and hooks like useState or useEffect.

To create the server-side component we need to create a new folder in the file
structure that is called the server and put the page component there as in Figure 9.12:

Figure 9.12: New file structure for the server-side component

Grab the code from Figure 9.13 as the component code:

export default function Server() {
console.log('Server page rendering: this should only be printed on the server');
return (
<div>
<hl>Server Page</hl>
</div>
)5

Figure 9.13: Server-side component code

242 Next.js Cookbook

The magic trick is that when you will enter the */server" link in the console you will
not see any text from the component code. This log will be only on the server side.

Server page rendering: this should only be printed on the server

Server page rendering: this should only be printed on the server

Figure 9.14: Log of server console that will not appear on the client side

Next what we can do is mix server-rendered components with client components.
To do that please create the mix folder and put the page file inside (if you use Vercel
example then put page.js there). Refer to the Figure 9.15 for the code:

import Client from './client';
import Server from './server';

export default function MixMatchPage() {
console.log('MixPage rendering'};
return (
<div>
<h1>Server Page</hl>
<div className="box">
<Client message="A message from
server"> <Server />
</Client>
</div>
</div>
i

Figure 9.15: Code for the mixed component

As you can see we will need two more components. The first step - will be the client
component and the second one is the server.

For the client please create the client.js file and use Figure 9.16 and copy the code
from it:

Mastering optimization tools for Next]S

243

‘use client®;

import { useEffect } from 'react';

export default function Client({
message,
children,

B Ao

console.log('Client component rendering');

return (

)3

<div>
<h2>Client Child</h2>
<p>Message from parent: {message}</p>

<div className="box-red">{children}</div>
</div>

Figure 9.16: The client component code

For the server - please create a server.js file in the mix folder and use code from

Figure 9.17:

export default function Server() {

console.log('Server component rendering');
return (

<div>
<h3>Server</h3>
<p>Server content</p>
</div>
)3

Figure 9.17: A server component

As you see in the Client component we used the ‘use client;" property to indicate
the compiler to use this component as client-rendered. After entering */mix" page
you will see the result from Figure 9.18 with mixed components:

244 Next.js Cookbook

Server Page
Client Child

Message from parent: A message from server
Server
server content

Figure 9.18: Mixed components

Please note that if you try to put a server component into the client component - the
server component will automatically degenerate into the client component. So be
careful with it and find the correct places for your components.

Interesting fact, using the server-rendered components led to the thinking that
Next]S is trying to reproduce the same way of using web apps as we did it 10 years
ago, by using server pages technologies like Java or PHP. Will see how far it will
come.

Creating SEO-friendly optimization

To make here some recommendations let us describe what is SEO and why is it
important. SEO is Search Engine Optimisation. Basically, everything in this chapter
(except experimental features) stands to improve the site optimization that will
directly affect SEO.

As SEO is a very huge topic that deserves a separate book, we will be going through
only the several parts that will help you to improve your site.

First what we will improve is a head part of the page that will contain the title and
description for the page. First, we need to create this part to use. Please observe
Figure 9.19 to collect the code with changes:

import Head from

export default function Layout({ children } : Partial<any>) {

7 2 code &
return (

<>
<Head>
<title>Create Next App PWA</title>
<meta name="description" content="Generated by create next app" />
</Head>
<// Same code as before
= />

)
Iy

Figure 9.19: Updates for the Layout component with head

Mastering optimization tools for Next]S 245

After that you will see that title and description exist on each page. The next step
is to add an Open graph element to the header. Open graph elements are special
elements that will help your page to become a rich object in the social graph. This
functionality will help your page to be shown correctly in Google (to have the correct
title, image, and description), and also if someone will share your page it will be
shown correctly with the correct data and image.

e og:title: The title of your object which should appear within the graph, for
example “The Rock”.

e og:type: The type of your object, for example “video.movie”. Depending on
the type you specify, other properties which may also be required.

e og:image: Animage URL that should represent your object within the graph.
e o0g: URL: The canonical URL of your object that will be used as its permanent
ID in the graph, for example, “https://example.com/somepage-123/”.

Refer to the Figure 9.20 to update your header with the following code:

<Head>
<title>Create Next App PWA</title>
<meta name="description" content="Generated by create next app" />
<meta property="og:title" content="Create Next App PWA" />
<meta property="og:description" content="Generated by create next app" />
<meta property="0g:URL" content="https://nextjs-cookbook.site/" />
<meta property="og:type" content="website" />
</Head>

Figure 9.20: Open graph tags for the head element

The problem now is that we will have the same information for each page. To solve
it we need to make these tags generate dynamically.

Update the component with code from Figure 9.21 to solve it:

246

Next.js Cookbook

XN

import styles from '../../styles/layout.module.scss'

import NavigationBar from '../../ui/molecules/NavigationBar'
import Head from 'next/head'

import { useRouter } from 'next/router';

export default function Layout({ children } : Partial<any>) {
const navigation = [
{title: 'Home', link: '/', meta: {
title: 'This is main page',
description: 'This is main description’
1},
{title: 'Articles', link: '/articles', meta: {
title: 'This is articles page',
description: 'This is articles description’
1},
{title: 'About', link: '/about', meta: {
title: 'This is about page',
description: 'This is about description'
1
]

const router = useRouter();
const meta = navigation.find(element=> element.link === router.pathname)
console.log('meta', meta);

return (
<>
<Head>
<title>
{meta?.meta.title}
</title>
<meta name="description" content={meta?.meta.description} />
<meta property="og:title" content={meta?.meta.title} />
<meta property="og:description" content={meta?.meta.description} />
<meta property="og:URL" content="https://nextjs-cookbook.site/" />
<meta property="og:type" content="website" />

</Head>
<header className={styles.header}>Next]S. Cookbook</header>
<nav>
<NavigationBar navigation={navigation} />
</nav>

<main>{children}</main>
<footer className={styles.footer}>2022. All rights reserved</footer>
</>

Figure 9.21: Updated component to generate meta dynamically

Mastering optimization tools for Next]S 247

Now if you check the page you will see that data is generated by the request as in
Figure 9.22:

Ty Y

y " content
" content="TF
title” content="This is art

" content="This is artic escription”>

punt” content=

Figure 9.22: Generated metadata in head tag

Conclusion

In this chapter, we managed to make last preparations and fixes that allow your
project on Next]S to be one of the most performant and SEO friendly. We covered a
lot of topics that could require more deep investigation.. There is no way to perfect
software without everyday improvements, do not hesitate to do that!.

As itis the last chapter of the book I want to say thank you if you read this book from
start to end. I hope everything that you met in this book will inspire you to create the
most interesting and perfect software using the Next]S framework.

Thank you one more time, and see you in the other books!

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com
El

e
Elu

J

A

Access token 62
Amplify app

hosting, in cloud 227, 228
API endpoints

creating, for application 149, 150
Apollo client

setting up, for NextJS 104, 105
Apollo Server

API, reusing 103, 104
connecting system, writing 100-102
model, creating for Next]S application 99
using, for NextJS 99
application
authorization, using 184-186
preparing, for production release 168
authorization
tests, adding 184-186
authorization form
code logic, creating 62, 63
component, mocking with pencil 56-59
components, splitting into generic
components 59-61
creating 56
global styles, separating from
local styles 61, 62
tests, writing for 63, 64

Index

AWS Amplify
admin area 203-207
authentication flow, creating with 208
backend, finishing with 221-226
data, adding to admin area 209
data models, creating for application 207
for hosting application 202, 203

AWS Functions
reusing, with layer functionality 218-221
using, for applications 209-218

B

Builder pattern
baking, for APT 93-98
writing, for operating data 28-38

Cc

Client-Side rendering (CSR) 192
Component styles 62
CRUD system, for articles

creating 156

data, updating in API 161, 162

public and private areas, separating

with Next]S 156-158

Redux store, for data state and edit 158-160
Cumulative Layout Shift(CLS) 194
Cypress 170

250 Next.js Cookbook

adding, to project 170-176

D

data API
connecting, to state management 120, 121
design patterns
builder pattern, for operating data 28-38
Singleton pattern, for data objects 22-27
Strategy pattern, for page
changing intent 38-42
using 22
Design tokens 62

E

E2E test
writing, with Playwright 182-184
End-to-End testing framework
Cypress, setting up for Next]S 170-176
Playwright, setting up for Next]JS 177-181
selecting 169

F

First Contentful Paint (FCP) 194
First Input Delay (FID) 194

G

Global styles 62
GraphQL way authorization
advantages 78, 79

Incremental Static Regeneration (ISR) 193
Interaction to next Paint (INP) 194
internal application pages
article item page, creating 153-156
article list page, creating 150-153
creating 150
internal pages
tests, adding 186-188

L

Largest Contentful Paint (LCP) 194

multilingual tool, for application
creating 162-165

multipage app
creating 12, 13

N

Next]S
for older npm versions 3-6
installing, with latest version of Node]S 2
installing, with npm 2, 3
project, for local development 6
running 2
SCSS, using 10
setting up 2
TypeScript, using 9
Next]S, as API server

authorization token, generating
for user 87, 88

Next]JS API routing structure,
creating 83, 84

Next]JS REST API, creating 85-87

using 83

Next]S project deployment

into production 192

maintainability 197

performance measuring 194-196

render, selecting 192, 193

Sentry, connecting for application
monitoring 198-202

P

page params state
changing, without data fetching
methods 18, 19
pages
changing 14-18

Index

251

performance optimization 232
dynamic load, using for
client side 232-237
images, optimizing with
components 237-239

server-side components, baking 240-244

Playwright 177

adding, to project 177-181

E2E tests, writing with 182-184
publishing system

application structure, creating 130-133

article button, adding 134
article description component 137
article edit component 147
article list item component 144, 145
article text component 138
article title component 136
atoms, creating 133, 134
back-to-list button styles 140
close button component 139
creating, for food blog 124, 125
dates component 135
dates component styles 136
delete article button 140
edit article button 141
internal pages, splitting into
components 128-130
mocks for article description page,
creating 125
mocks for internal page,
creating 125-128
modal component 146
navigation bar component 143, 144
navigation link 142, 143
separator component 142
styles, adding for component 135
styles, for delete article button 141
textarea styles 138

R

Redux
setting up, in Next]S 108

Redux store
objects, creating 114-117
tests, writing for 109-113
using, for authorization
in application 117-120
Refresh token 62
REST way authorization
advantages 78
router
optimizing, with design patterns 22
routing tools 14

S

SCSS

using, in Next]S 10
SEO-friendly optimization

creating 244-247
Server Side Rendering (SSR) 193
Shallow Routing 18
Singleton pattern

baking, for API 88, 89

using 88

writing, for data objects 22-27
SPA

optimizing, with design patterns 22
state-management tools

using, in applications 108
Static Site Generation (SSG) 193
Strategy pattern

baking, for API 89-93

writing, for page changing intent 38-42

Styled Components plugin
enabling 10
using 10, 11

T

TDD flow, for coding structures
creating 147
tests, writing for APT 149

tests, writing for page components 148

tests, writing for store 149

252 Next.js Cookbook

test
creating, for application 184
test-driven development (TDD)
component, writing in test-first way 48-53
environment, configuring 43-47
using, for safety and management 42, 43
Time to First Byte (TTFB) 194
TypeScript
using, in Next]S 9

U

unit test to Next]S component,
development flow 64

next steps way, selecting 78
TDD way, for creating components 64-76
tests, debugging 76, 77

Utility classes 62

w

WebPack
customizing 6-9

