
Andrei Tazetdinov

www.bpbonline.com

Next.js Cookbook
Learn how to build scalable and high-performance

apps from scratch

ii 

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork
119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-453

www.bpbonline.com

  iii

Dedicated to
My beloved wife:

Eugenie
&

My Daughter Alice

iv 

About the Author

Andrei Tazetdinov, is a highly experienced software engineer with over 16 years
of experience in the industry. Currently working at IBM IX as a Senior Frontend
Developer and Technical Architect, Andrei Tazetdinov has a passion for creating
innovative and user-friendly applications using cutting-edge technology.

Throughout Andrei Tazetdinov’s career, he has worked on numerous projects
across various industries, ranging from healthcare to finance. Their experience
has given them a deep understanding of the software development process, from
ideation to deployment.

In addition to his professional work, Andrei Tazetdinov is also passionate about
sharing their knowledge with others. He was a teacher at Samsung Coding School
for several years and worked with teenagers to guide them and create their very
first Android applications using Java.

With this book, Andrei Tazetdinov hopes to help aspiring developers and
experienced professionals alike to become proficient in building full-stack
applications using NextJS. His wealth of knowledge and experience in the field
makes him the perfect guide for anyone looking to start or advance their career as
a full-stack developer.

Thank you for choosing this book

  v

About the Reviewer

Denis Bezrukov is a dedicated Frontend Developer with a rich professional
background in the field of Forex trading platforms. His experience spans 4 years,
during which he has cultivated a robust knowledge baseD and skill set in the
development of complex applications utilizing React, Redux.

As a core contributor to the Rome tool project, a linter and formatter written in
Rust, Denis has honed his ability to create modern web developers tools.

vi 

Acknowledgements

I would like to express my heartfelt gratitude to my family and friend, who have
always been my pillars of strength and support. Their unwavering love and
encouragement have helped me navigate through the ups and downs of life, and
have been instrumental in shaping me into the person I am today.

In particular, I am immensely grateful to my daughter Alice, whose boundless
curiosity and infectious energy have been a constant source of inspiration for
me. Her insatiable thirst for knowledge and her relentless pursuit of excellence
have reminded me of the importance of curiosity and determination, and have
challenged me to strive for greatness in my own work.

I am also indebted to my colleagues, mentors, and friends, who have generously
shared their time, expertise, and insights with me throughout my journey. Their
wisdom, guidance, and constructive feedback have helped me refine my ideas,
sharpen my skills, and broaden my horizons. I want to gratefully thank Denis
Bezrukov from JetBrains for his support and help with this book review.

Finally, I would like to express my appreciation to all the readers of this book,
whose interest and enthusiasm have motivated me to share my knowledge and
insights with the world. It is my hope that this book will inspire and inform and
that it will contribute to a deeper understanding and appreciation of the topics it
explores.

  vii

Preface

As a full-stack developer, you need to master a variety of programming languages,
frameworks, and tools to build robust, scalable, and user-friendly web applications.
In recent years, NextJS has emerged as one of the most popular and powerful
frameworks for building server-side-rendered React applications. With its intuitive
API, powerful features, and vibrant community, NextJS has become the go-to
choice for developers who want to create high-performance web applications with
ease.

This book is designed to help you get started with NextJS and take your full-
stack development skills to the next level. Whether you are a seasoned developer
looking to expand your skillset or a newcomer to the world of web development,
this book will provide you with the knowledge, tools, and techniques you need
to build modern, dynamic web applications that meet the needs of today’s users.

In this book, we will cover a wide range of topics, including:

 • The basics of NextJS and its core features

 • How to create and configure a NextJS application from scratch

 • The power of server-side rendering and its benefits

 • Best practices for styling, routing, and data fetching with NextJS

 • Advanced topics such as testing, optimization, and deployment

 • AWS Amplify as a hosting provider and many more topics

We will also provide you with plenty of hands-on examples, practical exercises
that will help you improve your skills and confidence as a full-stack developer.
By the end of this book, you will be able to create sophisticated web applications
that leverage the power of NextJS and React, and you will be well on your way to
a successful career in full-stack development.

So, let’s get started and explore the exciting world of NextJS!

Chapter 1: Warming up with NextJS - In this chapter, readers will be introduced
to NextJS and will learn how to set up their development environment. They will
be guided through the installation of the necessary software and tools, and will

viii 

learn how to create a new NextJS application from scratch. Readers will also learn
the basics of NextJS, including how to work with the NextJS file system, how to
create pages and components, and how to use the built-in routing system. By the
end of this chapter, readers will have created their first NextJS application and will
be ready to dive deeper into the framework’s features and capabilities.

Chapter 2: Using design patterns in NextJS - In this chapter, readers will learn
how to use design patterns to optimize their NextJS application development.
The chapter will cover several common design patterns, including the Singleton
pattern, the Strategy pattern, and the Builder pattern. Readers will learn how
these patterns can be applied to NextJS to improve the efficiency and scalability
of their applications. The chapter will also provide practical examples of how
to implement these patterns in NextJS, with step-by-step instructions and code
snippets. By the end of this chapter, readers will have a solid understanding of
how to apply design patterns in NextJS and will be able to create more robust and
efficient web applications.

Chapter 3: Authorization in a glance with NextJS - In this chapter, readers will
learn about authorization in NextJS and how to implement it in their applications.
The chapter will cover the basics of authentication and authorization, and will
provide an overview of different authentication methods that can be used in
NextJS. Readers will also learn how to create a basic authorization system using
NextJS’s built-in authentication features. Additionally, the chapter will cover best
practices for securing user data and preventing unauthorized access to sensitive
information. By the end of this chapter, readers will have a solid understanding
of how to implement authorization in NextJS and will be able to create secure and
reliable web applications.

Chapter 4: Server-side power of NextJS - In this chapter, readers will learn about
the server-side rendering features of NextJS and how to take advantage of them
in their applications. The chapter will cover the benefits of server-side rendering,
including improved performance, SEO, and user experience. Readers will also
learn how to set up and configure server-side rendering in NextJS, as well as how
to work with dynamic data and API calls in a server-side rendered application.
Additionally, the chapter will cover best practices for optimizing server-side

  ix

rendered applications and handling errors. By the end of this chapter, readers will
have a solid understanding of how to use server-side rendering in NextJS to create
fast, dynamic, and highly scalable web applications.

Chapter 5: Using state management in NextJS - In this chapter, readers will learn
about state management in NextJS and how to implement it using the popular
Redux library. The chapter will cover the basics of state management, including
why it’s important and how it works. Readers will also learn how to set up and
configure Redux in NextJS, as well as how to work with Redux actions, reducers,
and stores. Additionally, the chapter will cover best practices for optimizing state
management in NextJS, including how to handle asynchronous actions and how to
use middleware. By the end of this chapter, readers will have a solid understanding
of how to use state management with Redux in NextJS and will be able to create
complex and dynamic web applications with ease.

Chapter 6: Implementing internal pages using NextJS - In this chapter, readers
will learn how to create internal pages in NextJS and how to implement a basic
CRUD system for managing user data. The chapter will cover the basics of creating
dynamic pages in NextJS, including how to work with dynamic routes and how
to pass data between pages. Readers will also learn how to set up and configure
a database, and how to use NextJS’s built-in API routes to handle requests and
responses. Additionally, the chapter will cover best practices for optimizing internal
pages in NextJS, including how to use caching and how to handle errors. By the
end of this chapter, readers will have a solid understanding of how to create and
manage internal pages in NextJS and will be able to build complex and powerful
web applications.

Chapter 7: The superpower of E2E testing in NextJS - In this chapter, readers
will learn about end-to-end (E2E) testing in NextJS and how to implement it using
the Cypress and Playwright testing frameworks. The chapter will cover the basics
of E2E testing, including why it’s important and how it works. Readers will also
learn how to set up and configure Cypress and Playwright in NextJS, as well as
how to write and run tests for a NextJS application. Additionally, the chapter will
cover best practices for optimizing E2E testing in NextJS, including how to handle
asynchronous requests and how to use test-driven development principles. By the

x 

end of this chapter, readers will have a solid understanding of how to use E2E
testing with Cypress and Playwright in NextJS and will be able to create robust
and reliable web applications.

Chapter 8: Deploying NextJS project to production - In this chapter, readers
will learn how to deploy their NextJS application to production using the AWS
Amplify platform. The chapter will cover the basics of deployment, including
why it’s important and how it works. Readers will also learn how to set up and
configure their AWS Amplify account, and how to connect their NextJS application
to the platform. Additionally, the chapter will cover best practices for optimizing
deployment in NextJS, including how to use environment variables. By the end of
this chapter, readers will have a solid understanding of how to deploy their NextJS
application to production using AWS Amplify and will be able to launch their
application with confidence.

Chapter 9: Mastering optimization tools for NextJS - In this chapter, readers will
learn about optimization tools for NextJS and how to use them to improve the search
engine optimization (SEO) of their application. The chapter will cover the basics
of SEO, including why it’s important and how it works. Readers will also learn
how to set up and configure optimization tools and NextJS Image Optimization.
Additionally, the chapter will cover best practices for optimizing SEO in NextJS,
including how to use metadata and structured data, and how to improve page
speed. By the end of this chapter, readers will have a solid understanding of how
to use optimization tools for NextJS to improve the SEO of their application and
will be able to maximize their online visibility.

  xi

Coloured Images
Please follow the link to download the

Coloured Images of the book:

https://rebrand.ly/g7kjstb

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :
errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :
business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

xii 

Piracy
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then
see and use your unbiased opinion to make purchase decisions. We at BPB
can understand what you think about our products, and our authors can see
your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

  xiii

Table of Contents

 1. Warming up with NextJS ... 1
Introduction .. 1
Structure .. 1
Objectives .. 2
Setup and run NextJS ... 2

Installing using npm and the latest version of NodeJS2
For the older npm versions ..3

How to run the project for local development ...6
How to customize WebPack ... 6

How to use TypeScript in NextJS ..9
How to use SCSS in NextJS ...10
How to enable and use styled components ...10

How to create a multipage app ... 12
How to change pages - Routing tools .. 14
How to change the page params state without running data
fetching methods .. 18
Conclusion .. 20

 2. Using design patterns in NextJS..21
Introduction .. 21
Structure .. 22
Objectives .. 22
Optimizing your SPA and router with patterns ... 22

Writing Singleton pattern for data objects ...22
Writing builder pattern to operate the data ...28
Writing Strategy pattern for page changing intent ...38

Using test-driven development for safety and management 42
Configuring the TDD environment ..43
Writing your first component in a test-first way ..48

Conclusion .. 53

xiv 

 3. Authorization in a glance with NextJS ...55
Introduction .. 55
Structure .. 55
Objectives .. 56
Creating the authorization form .. 56

Mocking your first component using a pencil and your ideas56
Splitting components into generic components ..59
Separating global styles from local styles for any component61
Creating the code logic for the authorization form ..62
Writing tests for the authorization form ..63

From unit test to NextJS component ... 64
Following the TDD way in creating components ...64
Debugging tests while developing ...76
Choosing the next steps way ...78

Advantages of the REST way authorization .. 78
Advantages of the GraphQL way authorization ... 78
Conclusion .. 79

 4. Server-side power of NextJS ..81
Introduction .. 81
Structure .. 82
Objectives .. 83
Using NextJS as an API server .. 83

Creating the simple NextJS API routing structure ...83
Creating the simple NextJS REST API ..85
Generating an authorization token for the user ..87

Using Singleton, Builder, and Strategy patterns in API construction 88
Baking Singleton for API ...88
Baking Strategy for API ..89

Using the Apollo client for NextJS ... 99
Creating the model for the NextJS application ...99

Writing the connecting system for Apollo ..100
Reusing API from the previous recipe for Apollo ...103
Setting up an Apollo client for NextJS ..104

Conclusion ..106

  xv

 5. Using state management in NextJS ...107
Introduction ..107
Structure ..107
Objectives ..108
Using state-management tools in applications ...108
Setting up Redux in NextJS ...108
Writing tests for the store before we start coding ..109
Creating Redux store objects in NextJS ...114
Using the store for the authorization in our application117
Connecting data API to state management ..120
Conclusion ..121

 6. Implementing internal pages using NextJS ..123
Introduction ..123
Structure ..123

Objectives ...124
Creating the publishing system for the food blog ..124
Mocking - List of articles and article description page125

Creating mocks for internal pages ..125
Splitting internal pages into components ...128

Creating the application structure for application pages130
Creating atoms and molecules ...133

Atoms ...134
Molecules ...143

Creating the TDD flow for all coding structures ...147
Writing tests for page components ..148
Writing tests for store ..149
Writing tests for API ..149

Creating some API endpoints for the application ...149
Creating internal application pages ...150

Creating an article list page ..150
Create an article item page ...153

Creating a CRUD system for articles ...156
Separate public and private areas with NextJS ..156

xvi 

Redux store for data state and edit ...158
Updating data in API ..161

Creating a multilingual tool for application in NextJS162
Conclusion ..165

 7. The superpower of E2E testing in NextJS ...167
Introduction ..167
Structure ..167
Objectives ..168
Prepare the application for the production release ..168
Choosing an End-to-End testing framework ...169

Setup Cypress for NextJS ...170
Setup playwright for NextJS ..177

Writing the first e2e test with Playwright..182
Creating more tests for the application ...184

Covering the authorization ...184
Covering internal pages ..186

Conclusion ..189

 8. Deploying NextJS project to production ..191
Introduction ..191
Structure ..191
Objectives ..192
Preparing the project to fly into production ...192

Choosing the “perfect” render for the application ..192
Measuring performance and maintainability applications in NextJS.194
Connecting Sentry for application monitoring ...198

Using AWS Amplify to host our application ..202
Understanding Amplify admin area ...203
Creating the data models for the application ...207
Creating an authentication flow with AWS ...208

Adding data in the admin area ...209
Using cloud functions for application ...209
Reuse cloud functions with layer functionality ..218
Finishing the backend with amplify ..221

  xvii

Host the application in the cloud and the first run ..227
Conclusion ..229

 9. Mastering optimization tools for NextJS ..231
Introduction ..231
Structure ..231
Objectives ..232
How to get more performance from superfast NextJS232

Using dynamic load for the client side to reduce the first load232
How to optimize images with components ...237

How to bake server-side components ...240
Creating SEO-friendly optimization ...244
Conclusion ..247

Index ..249

‘The beginning is always today.’
 — Mary Shelley

Introduction
Greetings, a future chef in the NextJS kitchen. In this chapter, we will begin our
journey into the world of sophisticated software development using the most
advanced web application framework to date.

I will not delve into the intricacies of the initial setup of the environment. If you
are here and ready to cook real masterpieces, then the environment necessary for
installing and configuring the nodejs is already on your PC (or Mac, depending on
preferences of course).

Structure
• Setup and run NextJS
 o Install using npm and the latest version of NodeJS
 o For the older npm versions
 ▪ How to run the project for local development?

Chapter 1
Warming up with

NextJS

2  Next.js Cookbook

• How to customize Webpack
 o How to use Typescript in NextJS?
 o How to use SCSS in NextJS
• How to create a multipage app?
• How to change pages. Routing tools
 o How to change page params state without running data fetching methods
• Conclusion

Objectives
In this chapter, we will install and set up the local development environment for the
easy start of the NextJS application. After you finish this chapter, you will set up and
run your new NextJS application and make as many configurations as you possibly
need for the first start. You will learn how to create a multi-page application with the
framework. Also, you will learn how to navigate between pages and how you can
manage the router properties.

Setup and run NextJS
For better performance and stability, I recommend a version of the NPM module
equal to 5.2+ or higher. You can also use the older npm-install-way if you prefer it
for some reason or you cannot install the latest version of NodeJS

Let us check several ways to install and set up your first project with NextJS:

In this book we will use yarn as an alternative to npm. Yarn provides a
number of features that are not available in npm, such as faster and more
reliable dependency installation, improved network performance, and better
security features. You can collect it using this link https://yarnpkg.com/

Installing using npm and the latest version of
NodeJS
Just type the commands into your console. Please note that in this book we will use
Typescript to produce the application. For the correct setup please use the commands
as follow:

Warming up with NextJS  3

Figure 1.1: Commands to install NextJS

After the installation is complete, your project will contain all files and configurations
to quick-start your new project and learn NextJS.

create-next-app contains some other useful commands for project creation
that will help you to understand how to use a framework. There is a
possibility to use the GitHub URL as an example for your first application.
The command should look like this:
yarn create next-app -example https://github.com/vercel/next.js/tree/
canary/examples/auth0

In this case, you will create a blank project with Auth0 possibility inside with
configured API and pages to a successful login. Please check this link for more
examples: https://github.com/vercel/next.js/tree/canary/examples

If you have already set up your project this way you can skip the next section.

For the older npm versions
For the older npm versions, use these commands to start the new project.
After successful setup and creation of the project do not forget to add the Typescript
to your project in case when you have created the project by this way:

Figure 1.2: Manual project creation

To add the Typescript please follow these instructions

4  Next.js Cookbook

Create the file in the root of the project using your IDE or with the CLI command:
1.	touch	tsconfig.json	for Linux/macOS
2.	echo	>	tsconfig.json for Windows

NextJS will automatically do all required setup for the Typescript you will need only
start your project using commands:

yarn dev or npm run dev

After that you will probably see answers about requirements for the project if you
do not have them installed into your project yet eg. @types/react, @types/node, @
types/react-dom. Just follow the instructions to complete the setup for your project

In the end, the whole setup will be complete. Please note several things:

You will see a file with this name in your root directory next-env.d.ts. Do
not remove it or change the file body for any reason. It is auto-generated
by the Typescript compiler. Please do not make any changes in the file next-
env.d.ts use the instruction below instead. Your configuration file tsconfig.
json contains information about the types that you will use in your project.
Just add a new type file into the include section to use it

Find below the example of the tsconfig.json	file that you should have as a result:

Figure 1.3: Code in tsconfig.json file

Warming up with NextJS  5

Why do we ever need this feature? Let us use imagination a bit to understand this
feature.

The general difference between using the *.ts files and *.d.ts files is that the second
one is used to declare a type definition. Still, not much clearance because we can
use both file types to declare a type. Ok, how about if we could declare the existing
JavaScript function for TypeScript? For example, we have a function like this in the
printHello.js file:

Figure 1.4: Code in printHello.ts file

And as a declaration in file printHello.d.ts will be the following:

Figure 1.5: Code in printHello.d.ts file

Now we can use function printHello without any compilation errors as it is declared
in the file with declarations.

If you made a setup in a modern and automatic way you can skip the next section
and proceed with the first commands to start.

Next JS in general works with a page-oriented architecture so the basic element in
the framework is a page. The page has its URL link from its creation. To create your
first page please check that you have a pages folder in your root folder of the project.
The main page (or the default page) will always be called the index.tsx. In the next
sections we will figure out how to rewrite and redirect pages but the name of the
default page is always index.

6  Next.js Cookbook

The next step is to create the file index.tsx in the pages folder with this code inside:

Figure 1.6: Code in index.tsx file

Please check if you have these commands in your package.json file. If you do not
have them then please create:

Figure 1.7: Code in package.json file

How to run the project for local development
Just run the command in your project root: yarn dev or npm run dev

After that, you can proceed with the URL from your CLI. By default, it is http://
localhost:3000

How to customize WebPack
Let us initialize the problem of why we would ever need to customize the WebPack
for our project.

Imagine that we have different behavior in development and production mode. For
example, we can use different environments and secret keys for each kind of build.
To see it we need it to inject some logic into the build process or create logic in
components.

Warming up with NextJS  7

We do not recommend the implementation of such logic inside the components
themselves and highly recommend separating this behavior in the build process

To make changes in WebPack for NextJS let us check what changes we can do in the
NextJS configuration. That can be done using the next.config.js file.

As in the case with declaration configuration, we highly recommend using separated
files for the environment variables that will be changed with the development
process. So please create files like .env.local or .env.development to change
variables while your project is in support conditions

For example, we can create the process variable that will be used in the development
or production flow. The body of your env file should look like this:

Figure 1.8: Variable declaration in env file

Your WebPack updates can be done in file next.config.js:

Figure 1.9: Code in next.config.js file

As you can see, we have added the process variable that can be used in our project.
Please note that adding or changing any variable should be followed with a
development server restart (or production rebuild, depending on what flow do you
currently use).

After that, you will be able to use your variable in the code like this or with any flow
you wish

8  Next.js Cookbook

Figure 1.10: Code in secret page file

Now we can insert some logic into WebPack in our configuration to act only in
development start, as an example:

Figure 1.11: Code in next.config.js file

You can inject any logic here or update the config with new plugins that you want
to use like this:

Figure 1.12: Code in next.config.js file

Warming up with NextJS  9

Let us look into an example of how you can use it with a real plugin. So let us check
this one for example https://github.com/vincent-herlemont/next-aws-lambda-
webpack-plugin. Using this plugin you can use AWS Lambda functions as pages
for your application. To implement this plugin you will need to install it first:

Figure 1.13: Command to install plugin into your project

And then change the WebPack configuration like this to enable it:

Figure 1.14: Code in next.config.js file

How to use TypeScript in NextJS
In the last NextJS version, there is no need for a special configuration of WebPack for
using TypeScript

What if I have a NextJS project that was created with JS only?

If you have a NextJS project that was created without typescript just add a tsconfig.
json file into your root and rerun your development server with yarn run dev (or
npm run dev) after that NextJS will show you the next steps to proceed. You will
need to enter these commands to fully configure your project

10  Next.js Cookbook

Figure 1.15: Commands to add typescript into the project

How to use SCSS in NextJS
In a modern version of NextJS, you do not need to have a special configuration for
using SCSS. Just rename your CSS files to SCSS and it will be automatically built.
No matter how you created the application we highly recommend storing your style
files in a separate folder.

Please note that using the style files should have a naming convention that
requires a style name to be like this <your-style-name>.module.scss.
That is a requirement because all global styles should be declared in your
_app.ts file and connected to the application. But if you have custom styles
for your different pages, please name your styles with module after the file
name. It is a part of the framework and can’t be reconfigured

How to enable and use styled components
In the modern React world, we can reuse components that were created for different
proposals and frameworks. Using the Styled Components plugin will enable the
feature to reuse components from web React to mobile React Native and from mobile
to NextJS framework.

To enable this plugin to enter these commands in your CLI:

Figure 1.16: Command to add Styled Components into project

Warming up with NextJS  11

After that you will need to add a new configuration in your next.config.js:

Figure 1.17: Code in next.config.js file

Now we can use the Styled Components feature in our project as in the code below:

Figure 1.18: Code for example styled page with Styled Component inside

12  Next.js Cookbook

How to create a multipage app
As you remember the main element in the NextJS structure is a page. The page is
a ReactJS component file (*.jsx or in our case *.tsx) that contains the code for a
separated single page. The magic of NextJS starts in a place where you do not need
to initialize or configure a possibility to create more than one page in the project.
Each file that will be placed in the pages folder will be automatically wrapped with
a link and could be called by URL request. So your file structure should look like this

Figure 1.19: The project folder structure

Here you can see we have two pages in our project. Let us put some code inside
them and create a link between them:

Figure 1.20: Code from home page component

Warming up with NextJS  13

And the second page with pretty similar code inside

Figure 1.21: Code from second page component

Now when we run the development server, we will see the page like this:

Figure 1.22: Result view for the home page

And by the click on the About link we will open the page with different content like
this:

Figure 1.23: Result view for the second page

As we can see, both the pages are connected by the link automatically and no
configuration is required for simple routing like this.

Also, you can define sub-folders inside your pages folder. That will also create a link
to your page as well. For example, you can create pages/articles/folders and organize

14  Next.js Cookbook

its single page application there using index.tsx as a root file for the application and
any name for other pages. The routing rules will be the same without dependency
to the level of deep.

How to change pages - Routing tools
Even having such powerful tools for page creation as we mentioned before in the real-
world application examples that feature still will be not enough. Pre-defined pages
could be difficult to create and support. Also, we will need to have a big amount of
file duplicates that are also not a good example of application architecture.

To solve this issue NextJS provides a useful mechanism with predefined paths. For
example, we need to add more recipes to our CookBook application and the routes
for them will look like this pattern: https://cook.book/recipes/HealthyBreakfast. In
NextJS we use a dynamic route and it will expect the same file structure as in the
pattern. But in our case, the last part should be dynamic so we can’t just name the file
HealthyBreakfast, so to solve it the file structure should look like this:

Figure 1.24: Project folder structure after file creation

Now we can create the code for a file named [recipe].tsx. The brackets in the name
are required by the framework to mark the file as the dynamic route. Please put this
code into the file:

Figure. 1.25: Code from [recipe].tsx file

Warming up with NextJS  15

Now when we reload the page in the required URL, we will see that result on our
screen:

Figure 1.26: Result of [recipe].tsx rendering

Nice! Now we can create any amount of recipe pages that could be ever required.
In our code, we use the hook that is called useRouter. That hook will collect whole
information about the router that we could need for our application. In the current
case, we are getting query information data. Also, if we will need to get more data
like in this example: http://localhost:3000/recipes/HealthyBreakfast?additionalDat
a=sugar-not-included ,

we can get the information that is the in additionalData variable by changing the
router query code like this:

Figure 1.27: Router query

After that, we could use this variable inside the code as it could be required.

Anyway, we can also name folders as dynamic folders if we would need them. For
example, our CookBook will start growing and we will need to group our recipes
into groups like Breakfast, Dinner, and Soups. Then the URL should be done like this
http://localhost:3000/recipes/breakfast/HealthyBreakfast. To solve it we can just
create 3 folders and put the dynamic files in each one. But The page design will be
the same so we do not need such a complicated structure the best solution will be to
create a dynamic folder structure:

Figure 1.28: Project folder structure

16  Next.js Cookbook

And in the end, the code of the page will look like this to react to dynamic route
changes

Figure 1.29: Code in recipe file

You can also simplify the structure if there is a possibility to not think about how
complex the parameters query is. For example, http://localhost:3000/recipes/
breakfast/sugar-free/HealthyBreakfast. And it could grow and grow and grow…
So. In this case, we can get rid of sub-folders and create the file with the name [...
recipes].tsx in a pages folder like this:

Figure 1.30: How to rename the file

Also, we need to make changes to the page code. The main thing is that data for the
router will come as an array so we will need to iterate it to show the information on
the page.

Warming up with NextJS  17

Figure 1.31: New code in recipe file

Pages that you create are wrapped with a special mechanism called Automatic
Static Optimization. This feature contains both options of rendering that are
possible for NextJS. If we use the static page option the route query will
trigger after hydration. We will look closer at rendering options in the next
chapters

How to change the router by the event?

We did a great job before and created the system that will give us an opportunity to
create a multi-page application in a short timeline. But how to change the routes by
the navigation click when we will have such big number of pages?

To do that lets create a link button in our code. That button will change the route to
another page. For example, let us loop 2 pages with the ‘next/previous’ button. To
achieve it your code should look like this one:

18  Next.js Cookbook

Figure 1.32: Updated code of recipe file

It is just an example. You can create your own expressions as you wish and generate
the router link by the requirements.

How to change the page params state
without running data fetching methods
Let us imagine that we have a page with recipes, and we have allowed our users
to leave a comment on this page. After one or more years the number of comments
became so huge that we were pushed to split all comments into pages that could get
from API at once. The other problem is if we share the page or accidentally reload
the page, we need to know the page number for the comments. If for the case where
to store local data the solution can be easily solved - with sharing its more tricky
part. NextJS routing module provides the functionality called Shallow Routing to
solve this issue easily

Warming up with NextJS  19

So, we will:
1. Catch the comment age param on page load.
2. Update the number on the event. For the simple example, it will be the

button:

Figure 1.33: Final version of recipe file

As a result, we could change the variable parameter but the page init mechanism
will fire only once because of the shallow parameter activated.

Figure 1.34: Console view after changes of recipe file

20  Next.js Cookbook

As you can see the router param is changing but the initial data stays the same. That
means that no fetching methods will be activated using shallow routing.

Conclusion
Still remembering the time when solving such problems could take several days.
It was necessary to create the logic for changing the routing, process each request,
receive data, create logic for the initial receipt of data, and so on. NextJS allows you
to reduce the development time in solving such problems to several minutes. Thus,
it is now possible to create a simple blog, provided that the serverless CMS is used.
In the next chapters we will look at how to work with such data, but for now we will
not go into this.

One should keep in mind that skill comes with practice. In this chapter, we looked
at how to quickly deploy a project and create a simple application with a few pages.
Practice. Create more pages and logic. Use ReactJS knowledge to create software.
The design rules are the same.

In the next chapter we will start architect the application in modern way using
design patterns and Test Driven development

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

If everybody minded their own business, the world would go around
a great deal faster than it does.

— Lewis Carroll

Introduction
In every business when we use, NextJS any part should take responsibility for its
own scope, to not invent the wheel each time we can use good old programming
patterns that will be able to solve a daily problem faster as keeping the codebase
scalable and maintainable condition. The problems could be as short and solvable in
many ways as complex and require more architectural decisions.

Speaking about the tools that we will use in this chapter - we are going to use
design patterns in the app-building process. As you know there are several rules
and requirements in the application-creating process and in the code quality
requirements also.

In this book, we will use only three of them just to keep in the topic on NextJS but you
can check and use other patterns in real life. The name of the patterns is Singleton,
Builder, and Strategy. These patterns are mostly used in any scale of application
from the beginners’ small to really big and scaled applications.

Chapter 2
Using design

patterns in NextJS

22  Next.js Cookbook

Structure
•	 How to optimize your SPA and Router with patterns?
 o Writing Singleton pattern for data objects
 o Writing Builder pattern to operate the data
 o Writing strategy pattern for page-changing intent
•	 Using Test-Driven Development for safety and management
 o How to configure the TDD environment?
 o Writing your first component in a test-first way
•	 Conclusion

Objectives
In this chapter, we will learn how to optimize our core with simple design patterns
that will give us the possibility to easily scale and refactor the application in any
project timeline. Also in the second part of the chapter, we will introduce the
TDD way of developing the NextJS application to make our code more safe and
manageable for the project team members.

Optimizing your SPA and router with
patterns
Let us deep down into a rabbit hole to figure out what problems in SPA and by
routing we can solve using design patterns and if it is a real problem at all.

In the real world, the application can contain logic that is used in more than one
place, and this logic can also be complex algorithms that require to use of more than
one function or class. For such cases application development introduces the design
patterns. The most advantage of using design patterns is that you do not need to
invent a logic or algorithm but use the most well-known scheme. It will give less
complexity to test and debug applications.

Writing Singleton pattern for data objects
To understand what is Singleton let`s imagine that to create the application we
would require to get a new laptop each time we want to create a new file. Sounds
complicated and also we will have too many laptops that are used for the same
task. As the result, we will overflow our working space with laptops. The same will

Using design patterns in NextJS  23

happen with the data objects if we will create a new instance each time we want to
work with the data that already exists.

In a big scaled app, we will need to use classes and objects that will be created in
several places of our code. That could create overuse of memory for the browser.
Of course, we live in a world with super powerful processors and do not have
an efficient memory but, that does not mean that we can spend it all the time. In
JavaScript, we, have to understand that resources using not only for calculating and
working with the data but also for the UI and animation. To make your application
work smooth and predictable we always need to think about optimization.

For such cases, we can use a Singleton pattern that will help us to solve several
problems. First of all, we can be sure that a class is created only once that will save
our resources. On the other hand, we can control the global access to the instance
and use it to share the data between other instances.

The limitation of using this pattern can be that it is solving more than one problem
as a class so it will violate the single responsibility principle.

This is a good practice to use in data fetching as we can solve many problems with
data sharing and caching data only with only wrapping our logic with this pattern.

The Objective Oriented world will appear like Figure 2.1:

Figure 2.1: Singleton schematic object view

Where will we use this pattern in our application? We will use it only for data that
we will share between components.

Let us try to create one object as a Singleton. To do it we will create the folder named
“core” in the folder “./pages” to have not even shared elements between components
but have it shared even with API. Then create a file named “data_service.ts”.
That will be our first shared object that will contain some information inside.

24  Next.js Cookbook

Take a look at the Figure 2.2 with a code example. That code we will add to the file
that we just created.

Figure 2.2: Singleton class instance

The logic of the code is pretty simple. We are creating an instance of the class on
creating only in case it is not created. In case it is already created we will use the
current instance.

Please note! There is no silver bullet in using patterns as Singleton. Be
careful in choosing. I recommend using it only for the data modeling for the
application

Now we can do some architecture to figure out what data structure we will have to
share data between components.

As we are playing around with the blogging system let us use some data for the
articles so we need to collect the data about the page into properties of the class. In
the real-world app, we can use as many such services as we want. We will start from
one in our basic example here.

For the article, we will require several fields to have:
•	 Title: String
•	 Author: String
•	 Content: String
•	 Category: Object
•	 Image: String (it will be an URL)
•	 Creation date: Date

Using design patterns in NextJS  25

•	 Allow comments flag: Boolean
•	 Status: Enum

The code of the class for these requirements will look like the following figure:

Figure 2.3: Article Data class using interfaces and Singleton pattern

Now we can re-use and call the data of the article from any place in our code and it
will be shared between the modules. How it will help us if technically we can just
send all data as props into all components on the page? So, for this exact example,
we do not need the data to be props as we do not plan to mutate the data while
rendering and using the page. It will be rendered once and never changed until the
whole page is reloaded. Also, we will not need to change the props of the component

26  Next.js Cookbook

in case if the data structure is changed so we will be double-safe in this case. That
does not mean that we will get rid of using props in our architecture. It is just a
possibility to use data in different places.

As we will use the API functionality of NextJS in future chapters here we will just
create some mock data to use in the app. Please create some JSON files in the folder
“mocks” in the “pages” folder.

The file with mock data will contain this data as shown in Figure 2.4:

Figure 2.4: The mock-data JSON that will be used in the app

For the test, you can create more than one element in the array of data. To get the
data we will create the index.ts file in the “pages/mocks” folder.

This file will contain a function that will imitate API calls and return the data as the
following figure:

Figure 2.5: Aggregator object for the mock data

Using design patterns in NextJS  27

After that, we can implement this function into our Singleton class to get the data
ones it is required.

Let us do some updates in the service class to implement mock data receive:
(Figure 2.6):

Figure 2.6: Updated service with managing data methods

Leaving the console.log statement to show you how it will work. The log statement
will trigger only once even if you will do actions on the page and change the router
state. The reload of the class will happen only if we do a hard page reload.

As you probably can imagine - this way of service use might be used instead
of using Redux or any state management system. But please do not confuse
patterns. Redux is a specific implementation of the Flux pattern that provides
a more streamlined and efficient way of managing the application state. So
using Redux we can subscribe and know when the state was changed and
what was before the changes. Singleton is a good thing only in case we need
to share data or cache the data.

28  Next.js Cookbook

The data is loaded and we will need to operate with this data somehow. For these
requirements, we can use another pattern called Builder.

Writing builder pattern to operate the data
Now when we have a singleton for data we can proceed with page creation. In
simple examples, there is no issue with just getting the data and then putting it into
the template. Let us scale the example from a basic “Hello-world” application to
something more specific and enterprise.

In this case, we will need to operate this data into something special before we do
render. In this case, we can use another pattern called Builder.

For example, we do a Food blog that contains recipes for baking Burgers. There are
hundreds of different burgers but the steps of creation are quite same. We will take
a basic example that will contain only a few of them as it could be very complex in
the end. Let us take an example where exists only these steps:

1. Baking top buns part with seeds.
2. Baking top buns part without seeds.
3. Baking meat.
4. Baking fish.
5. Baking chicken.
6. Prepare burger sauce.
7. Prepare fish sauce.
8. Prepare special sauce.
9. Baking bottom buns part.
10. Grill burger with cheese.

Most of our burgers will have these steps to produce a burger. But not all the burgers
will have all the steps.

Using design patterns in NextJS  29

Figure 2.7: Schematics for the burger producing steps

In Figure 2.7 we can see an example of what the building process will look like for
some simple burgers with meat. We will use only half of the possible steps to build
some products.

This is a real-world example of how the Builder pattern is working. Now we can use
this knowledge in the programming language world.

Let us try to write some code for this pattern. For typescript it will look like this:

Figure 2.8: Builder interface for the implementation

30  Next.js Cookbook

The convention of using an “I” prefix for interfaces was popularized by
Microsoft in their .NET framework, where it is a widely used convention for
naming interfaces. This convention has since been adopted by many other
programming communities, including the TypeScript community

This interface will be a main part of the builder class as it contains all methods that
will be used in data creation.

Now having such an interface, we can create the builder class that will appear like
Figure 2.9:

Figure 2.9 Builder class realization using builder interface

Using design patterns in NextJS  31

After that, we will need a director class that can contain all options on our burger
menu. Note that the Director class is not necessary to exist but it will be more simple
to call one class that contains the menu of the burgers for our example. This class
will look like this:

Figure 2.10: Builder director class to orchestrate builder

To activate the building we need to add the creation of a builder and director to our
component with the following code:

Figure 2.11: Activation of building using all instances that we created

We can place this code in any part of the code but we highly recommend doing it in
the components part before the rendering part. After that in the place where we get
the data we can use the builder like Figure 2.12:

32  Next.js Cookbook

Figure 2.12: Build hamburger on page load using useEffect hook

Now we can see that the burger is perfectly built if we open the console as illustrated
in Figure 2.13:

Figure 2.13: Console log result after page load

You can use any options to build the burger but this is how it works for any case that
we will use in this book.

This is an abstract example. But to use it in the real-world application we can use the
previous experience of the Singleton pattern and add some data inside.

To achieve it we will need to add some code to our project. The defined steps of what
we will do will look like this:

1. We will require some mock data that will be created as we did it before for
the articles.

2. We will need a singleton service class to operate with the data.
3. We will define a recipe as a product and make the builder return the product

as a result of the build process.
4. We will define steps as an enum.
5. We will define logic regarding enums.

The complete code after these requirements will look like this. The mock data as
depicted in Figure 2.14 :

Using design patterns in NextJS  33

Figure 2.14: Mock-date for the builder

After that, we will create the file “burger-config.ts“ that will contain an enum
with the required keys for this data. That enum will help us to define all names that
we will use in the builder as each key will contain the data key and the name of
the method that will be used to call for this data. Having this enum we will define
the connection between data and code, and we will also solve the future issue with
naming convection of methods names.

Check the next Figure 2.15 to find out what the code will look like:

Figure 2.15: Enum for the Builder

34  Next.js Cookbook

The data service will require a bit more logic rather than just getting the data and
providing the data. As we are making the system that will be ready for real-world
API calls we will have the method to get each step of the recipe by the key. We will
cache this data inside the singleton to reuse it in the next creation of the burger. To
complete this issue we will need this class like in the following figure:

Figure 2.16: Service to manage burger data

As you can see, we have the “getStep” method to get the step by the key name
that we described before in the BurgerSteps enum and for each method call, we
will collect the steps array, which will be reused if we will need it, instead of the
API call. Why do need to optimize this at all? Why just not have a call each time we
need the information? The answer is simple - Money. In the modern architectures
that are used for the deployment of the applications the cloud solutions mostly cost

Using design patterns in NextJS  35

per amount of calls that we are making during application use. In this case, if we
will have fewer bills at the end of the month. Also we will increase the speed of
the application as we do not need to wait for the server to get the information that
already exists in the application

Finally, we will do some changes in the builder and director classes to fit the new
requirements regarding having the enum in the code: (Figure 2.17)

Figure 2.17: Builder interface

As you see we can use the enum element name as a name for any method or property.

Using this possibility, we can rename and rewrite all required methods for the
interface using the new enum element.

We will add two more methods that will add logic that will allow us to return the
recipe as a product and reset the builder to have the ability to start other another
burger in our process lanes as shown in Figure 2.18:

36  Next.js Cookbook

Figure 2.18: Builder realization using the interface

Using design patterns in NextJS  37

Also, we need to add some refactoring to director-class as shown in Figure 2.19:

Figure 2.19: Builder director to orchestrate builder

Finally, we have the whole burger building process in the code and we can build any
burger recipe for an article in our food blog. We can add, change or remove steps as
many times as we want and it will not take a lot of refactoring as even the names of
the methods are centralized in the enum.

Figure 2.20 explained the call of the builder to build a burger. Add a console.log
function to check what is in the product now:

Figure 2.20 Initiate the builder on page load using the useEffect hook

38  Next.js Cookbook

The result in the console will look like this: (Figure 2.21)

Figure 2.21: Console log result after the page load

The burger is done and we can move to the next pattern that called Strategy.

Writing Strategy pattern for page changing
intent
Speaking about burgers - there are several of them and each one will require its
personal way of backing. In the other words, we will use different strategies to bake
different burgers. This issue is possible to solve using a regular “if” expression, but
it will be more beautiful to use a Strategy pattern here.

The pattern basis is that we can take similar algorithms and group them into their
scoped classes and then switch these classes while the application is working.
Having this feature we can change the recipe in real-time having different strategy
classes that are highly independent of one another.

For the current example we will make it work using the following steps:
1. We will create Strategy classes to use them as the action object instead of

expressions.
2. We will use a naming convention with an Enum that will contain the possible

method names inside.
3. We will create the class with business logic where we will create the method

that will initiate chosen strategy class as a parameter.

Using design patterns in NextJS  39

The working scheme of the pattern is described in the Figure 2.22:

Figure 2.22: Strategy object schematics

We have enough theory here so we can start coding after having all requirements.
In the first place we will need the burger type in our article mock data and add the
burger type parameter inside like this: (Figure 2.23):

Figure 2.23 Updated mock data with burger type

Then we will add some more configurations for the burgers. We will need enums to
store the strategies for baking like this:

Figure 2.24: Namespace for the strategies

40  Next.js Cookbook

Now we have 2 baking strategies that will help us to make a Strategy pattern logic.
Then having this we can create the interface and strategies classes: (Figure 2.25)

Figure 2.25: Strategy classes that will be used in the application

Now we can finally create the Kitchen class that will contain the logic of baking
different burgers depending on what strategy has been chosen as shown in Figure
2.26:

Figure 2.26: Context class with business logic for the application

To make these updates work in the page component we will need also to update the
code there to have the following code inside:

Using design patterns in NextJS  41

Figure 2.27: Initiation of strategies on page load

Now on each reload we will bake a burger depending on what data will come from
the article. We will have a possibility to change the strategy while using this page
using the function “changeBurgerType”.

Starting this code will show us the same result as we had before but on calling the
change burger type function it should look like this:

42  Next.js Cookbook

Figure 2.28: Console log result after page reload

As we see here we baked two different burgers while using one page.

I know that right now it looks like over-coding the simple issue. But please
note that using patterns as using complex frameworks is not a good idea for
the basic tasks. You should understand that your application is expected to
be complex and scalable to use such a way of programming applications

Using test-driven development for safety
and management
In the software development world, we cannot fully trust anybody, especially the
code. The code can contain errors, bugs, and wrong logic. We can continuously check
the application manually using requirements but as far as the application will grow
we will lose control of the application quality. To avoid such situations, we should
use the Test-Driven Development process (we will call it TDD to make it more short
and precise). TDD is the way of creating applications that are based on short cycles
of the development flow. In this process, we will not code the application but we will
code the tests first before we create any code at all. That will mean that when the
development is started, we will use requirements to create the tests and then create
the code that will be created to pass these tests.

Using design patterns in NextJS  43

Generally, there is not always possible to create a maximal amount of tests before we
made any application because in Agile (which is used in most application projects)
we do not have strict requirements at the start. But the good news is that we do
not need to write a big amount of tests. Any amount will be enough to follow this
beautiful but not easy methodology of application creation.

Configuring the TDD environment
In this book, we will use several tools to create tests and make the application more
development-safe. For the unit tests, we will need Jest and test library from React
(as we use the react inside) and Playwright for the End-to-end tests. Having this our
CI/CD will be in a safe place.

What is Jest? Jest is a Javascript testing library that will allow us to create unit tests
that will be required before the application is rendered. In simple words, the library
will help us to check the code safety before it will be rendered to production like this:

● The library will wrap the function with a call.
● The library will get the result of the function isolated from the application.
● The library will assert the result using expectations as a result of the job.

The next library that is required is React Testing library. This one is not necessary in
the real world as we will use E2E tests. But, having a DOM test before rendering and
having snapshots for each component will also add more safety to your application.

To add these libraries to your project type this in your console: (Figure 2.29)

Figure 2.29: Command to install required packages

Use the flag “--legacy-peer-deps” for the command if you will see an error about
the wrong version of the react.

Now we can configure Jest in our project. Add “jest.config.js” in the project root
with this configuration as shown in Figure 2.30:

44  Next.js Cookbook

Figure 2.30: Configuration file to setup Jest

Let us do some describing of what we created in the configuration:
•	 collectCoverageFrom is a filename pattern that will be used to reach out to

the test files
•	 moduleNameMapper is a mapper for the style files with import inside
•	 testPathIgnorePatterns is a path pattern that will be ignored for test

coverage
•	 testEnvironment is a rule for how we will test components. We use jsdom so

do not forget to install it separately by typing “yarn	add	jest-environment-
jsdom”

•	 transform is using a transpiler before we do coverage
•	 transformIgnorePatterns patterns to ignore for transpiler

If you face the problem with the text “Cannot find module ‘react-dom/
client’” just downgrade the test library in package.json like this “@testing-
library/react”: “12.1.5”

Using design patterns in NextJS  45

Now we can start creating our first test. To do it create the file index.test.jsx in
__tests__ folder. In this file we will code the test like this:

Figure 2.31: Code for testing. We check that text is in component

This basic test is rendering the home page and checking that it is having the heading
element with text that is provided in the name section. Now we can run a test by
typing “yarn test”. The result will look like this:

Figure 2.32: Console log result after test start

For now, you can just play around with Jest as we will proceed with the configuration
of the test environment.

To init playwright in your project do this in your console in the root directory as
shown in Figure 2.33:

Figure 2.33: Playwright installation command

46  Next.js Cookbook

This will init the library in your root project and you will see this message in your
console as shown in Figure 2.34:

Figure 2.34: Installation process for Playwright package

Proceed with typing “y” in the console. When it asks you “Where to put your end-
to-end tests? “ type “e2e” to put your tests in the folder with this name. The library
will create the example file with the most popular examples in this folder. You can
play around to figure out how it works.

Now we have two test systems in the project and we need to avoid conflicts between
them. To do it change your test ignore patterns in Jest configuration to the following
figure:

Figure 2.35: Configuration changes, required to proceed with test packages

We can create the new task in package.json that will cover Jest and E2E tests. Add
this into your package file as shown in Figure 2.36:

Figure 2.36: Task that should be added to package.json file

After that in your console, you will see the full report of our tests like the following
Figure 2.37:

Using design patterns in NextJS  47

Figure 2.37: Coverage result after task run using npm or yarn

This report contains full information about coverage and e2e results. Coverage - is
the information about how many tests exist for each file and function is exist in your
system using the percentage system for measuring. (Figure 2.38):

48  Next.js Cookbook

Figure 2.38: Test report with all passed tests

Writing your first component in a test-first way
To start developing we will require to create the test file in “__tests__” folder. We
will agree that next page that we will create will be the list of recipes. So the code in
our new file will look like this as shown in Figure 2.39:

Figure 2.39: Test code to check text in the component

Here we are created the test that expects page to be rendered with heading that
contain text “Recipe	 list”. Start the test with “yarn	 test” command in your
console. The result will look like this:

Using design patterns in NextJS  49

Figure 2.40: The failing result of the test that we created

The test is failing as we do not have such page component yet. So next steps to
follow this development way is to create the component that will fit requirements
inside. For example, we will create the page component like the following figure:

Figure 2.41: Component that was expected in the test

And now if you start the test again the test will fail with another message as shown
in Figure 2.42:

50  Next.js Cookbook

Figure 2.42: The failing result of the test

So, we are having an error message about the heading that not fits the expectations
that we are created. This explained with the following code line:

Figure 2.43: Test code line that triggers the error

In simple words the testing process is contains creating the logic of what expected as
a result of component or function job. Here we see that we expect this element to be
rendered in the component as shown in Figure 2.44:

Figure 2.44: Test code with text that should be on the page

So as a result of it we are getting error as its not exists. Let us follow the test
requirements and add the required text into element like this:

Using design patterns in NextJS  51

Figure 2.45: Updated component code

Now the result of the test will look like the following figure:

Figure 2.46: Success result of the test code run

All tests are passed and having a green color. In the end we are having the correct
development flow where we create the requirements for the code before we create
the code itself.

Next step is to cover after rendering the process and create the E2E test. To do it
create the file “recipe-list.spec.ts” in “e2e” folder that will contain the following
code:

Figure 2.47: E2E test example with an open page action

52  Next.js Cookbook

Now we can check the test by typing “yarn test:e2e” in the console. The result will
look as shown in Figure 2.48:

Figure 2.48: Failing test result for the E2E test

The browser will be opened and the result page will appear as shown in Figure 2.49:

Figure 2.49: E2E test reporting page

As we can see the test is failed. But we made it ourselves just to show how the
process will look like this. Let us fix this by typing the correct text in the expected
area as depicted in Figure 2.50:

Using design patterns in NextJS  53

Figure 2.50: Updated text that expects correct data

Now the result will be like Figure 2.51:

Figure 2.51: Success result of the test

Hence, all the tests are green now.

Conclusion
There is no special purpose to not to think about the code quality in the very
beginning. In most of the cases, software developers think that if we use Agile then
we can just do a lot of refactoring all the time. It is true on one side, but on the other
side, hardly structured code base is not open to refactoring and scalability.

We can hardly recommend using the knowledge from this chapter to use in your
next new application. It will give you a hundred steps forward to create a very clean
and scalable codebase in the future.

In the next chapter we are going to learn what is authorization from the application
perspective and how to design and start implementing a login form in our application.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
Any modern application that is possible to invent today requires a personal user
area. To achieve this - we will need authorization. There are several possible ways to
create and implement auth system into your application. There are also super-simple
solutions that require only implementing the auth system into the application (like
AWS Amplify or Google Firebase) as well as the solutions that involve coding and
architecture.

To understand how exactly the authorization is working, we will do everything
manually from the raw stage with idea creation to the final realization.

Structure
•	 Creating the authorization form
 o How to mock your first component using pencil and your ideas?
 o How to split component into generic components?
 o Separating global styles form local styles for any component
 o Creating the code logic structure for authorization form
 o How to write tests for authorization form?

Chapter 3
Authorization in a

glance with NextJS

56  Next.js Cookbook

•	 From unit test to NextJS component
 o How to follow the TDD way in creating the components?
 o How to debug tests while developing?
•	 Advantages of REST way authorization
•	 Advantages of GraphQL authorization

Objectives
In this chapter we will start working with authorization and touch the topics what
is the authorization itself and how to start creating the authorization from the start
to ready application. Also we will be introduced how to use it with the test driven
development and compare the http connection ways using REST and GraphQL
ways of connections

Creating the authorization form
From the user perspective, there are not many ways to get into the personal area not
using the special pages or interfaces for it. To pass the user into the personal area
we will need the authorization form in our system that will contain the login and
password fields log in.

There is no reason to start coding immediately when you get the task to create
something. Before that, we will need to do some preparations that will help us and
save a lot of time. Always remember: the code is only the realization, what matters
is your logic and idea.

Mocking your first component using a pencil
and your ideas
Let us start creating our first component and for the first step, we do not need
anything except something to draw and a quiet place to think. You can use any
comfortable tool as nowadays there are a lot of free tools out there for example .
Figma, but at the current state, we can just use the pencil and paper.

Let us create some requirements that will help us to proceed with everything. We
will call it General requirements:

•	 The form will use a separate page
•	 All form states will be provided on one page
 o Possible form states

Authorization in a glance with NextJS  57

 ▪ Login form
 ▪ Login form with error
 ▪ Welcome layout with redirection and count down in 5 seconds
•	 The form will contain 2 input fields
 o Login field
 ▪ Should take only English letters
 ▪ 3 letters minimum
 ▪ 100 letters maximum
 ▪ All HTML special characters must be removed from the input
 ▪ The error about validation should be shown if we change focus or

click on a submit button (that also changing of focus)
 ▪ The input field should have a “text” type
 o Password field
 ▪ Should take only English letters
 ▪ 8 letters minimum
 ▪ 50 letters maximum
 ▪ All HTML special chars must be removed from the input
 ▪ Data inside should contain one Capital letter and one number
 ▪ The error about validation should be shown if we change focus or

click on a submit button (that also changing of focus)
 ▪ The input field should have a “password” type
 o Submit button
 ▪ The button is always active
 ▪ If we do request into API we should disable the button and show

animation for the call
 ▪ Click on the button should contain prevent default logic to prevent

bubbling clicks outside of the form
 ▪ The background color should be #84DCC6
•	 The form should be vertically and horizontally aligned to the page center
•	 Form max-width should be 800px
•	 Form background color should be #EEF7FB
•	 Form error color should be #FF0A0A

58  Next.js Cookbook

Now when we have all requirements, we can draw some mockups for our
authorization system. In the Figure 3.1 we see the mock up for the login form that
will be used to enter the private user area.

Figure 3.1: Login form mock

When we did some mockups for the login page we can proceed with requirements
and create a layout for the errors that will look like this:

Figure 3.2: Login form mock in case if there are some errors in the credentials

Authorization in a glance with NextJS  59

The last one if everything is correct will look like this:

Figure 3.3: Mock for success authorization screen

Now we have everything to start coding. But before that, we will look at the Atomic
design system to create a better structure for the UI of the application.

Splitting components into generic components
What is atomic in general? Atomic Design is a methodology created by Brad Frost
seeking to provide direction on building interface design systems more deliberately
and with explicit order and hierarchy.

There are several levels of elements that is presenting the design level for each
component that contain level names: Atoms,	Molecules,	Organisms,	Templates,	
Pages all appear like in Figure 3.4:

Figure 3.4: Atomic design methodology scheme

60  Next.js Cookbook

Let`s describe what Figure 3.4 means:
•	 Atoms are the building blocks of al matter, and in the context of Atomic

Design, atoms are the smallest, most basic elements of a user interface.
Examples of atoms include individual HTML elements like buttons, form
inputs, and icons.

•	 Molecules are collections of atoms that have been grouped together to create
more complex UI elements. Examples of molecules include forms, search
bars, and cards.

•	 Organisms are combinations of molecules that form distinct sections of an
interface, such as headers, footers, and navigation menus.

•	 Templates are higher-level representations of how an interface might be
structured, and they typically include a combination of organisms, molecules,
and atoms. Examples of templates include homepage templates and product
detail page templates.

•	 Pages are the final level of Atomic Design, and they represent the specific
instances of templates that are used to deliver content to the end user.

As NextJS is using this pattern for the pages we will use it for the smaller components
to follow the good practice of application creation with React (and NextJS in general).

So following this system we will have this structure of possible components. We will
call it UI requirements:

•	 Atoms
 o Login input
 ▪ Should have a placeholder: Enter your login
 o Password input
 ▪ Should have a placeholder: Enter your password
 o Submit button
 ▪ Should have a label: Login
•	 Molecules
 o Login form and Welcome message layout
 ▪ Should contain form
 ▪ Should contain error field
 ▪ On success, the form should be switched to welcome text
•	 Organisms
 o Authorization layout that centered on page CSS rules

Authorization in a glance with NextJS  61

•	 Templates
 o System messages and auth
•	 Pages
 o Login page

As we do not have so many different elements at the current state we will not use
Organisms and Templates for the current example as it will be just a wrapper for the
component that will not do anything. But we will extend it in the next chapters. For
now, the structure of our application should appear like Figure 3.5:

Figure 3.5: Structure of the project that will represent Atomic system

Separating global styles from local styles for
any component
As we are following the Atomic design it is also a good practice to split your styles
into a meaningful part to have more convenient maintainability.

To achieve it let us split all styles into four pieces:
•	 Design tokens
•	 Global styles
•	 Utility classes
•	 Component styles

62  Next.js Cookbook

Design tokens, global styles and utility classes are mostly universal styles for the
project not separated for each component. In the Design tokens, we will store all
possible variables for the application as sizes, colors, margins, and other properties.
The file will be named `variables.scss`. We already have a file named `colors.
scss` so all content from it will be moved into variables. For the Global styles, we
will use the file named `globals.scss` that already exists in the system. In global
styles we will store typography styles, layouts settings and styles. In the Utility
classes we will store all possible mixins and functions that can be reused in some
components but are not required for all of them so should not be stored in the
globals.scss file. Let us name the file as `utilities.scss`.

And the last one for the Component styles we will use the system that we already
use as <module-name>.module.scss. In this style file we will store components
specific styles for example, buttons, forms, inputs

Creating the code logic for the authorization
form
As we created the requirements for UI before we need also to extend the requirements
for the business logic as authorization is not only the login form.

In simple words the authorization should work like as shown in Figure 3.6:

Figure 3.6: Authorization scheme as high-level architecture

To access any resource at the resource server we need to have a token. There are two
kinds of tokens: Access token and Refresh token. The access token is responsible,
literally for the access to the resource and the refresh tokens are required in case
when the access token is expired. What is meant here is to have the possibility to
access any web page or data we need to call it with a special key (Access token).
But for the security reason this token should be expired in some amount of time (for
example. each 1 hour the token becomes useless). After that API should regenerate
the token using also some permission to do it (Refresh token). And now we can use
the system as long as we want.

Authorization in a glance with NextJS  63

Token should not be hashed, but rather encrypted, as hashing is a one-way
function that cannot be reversed. Encryption, on the other hand, can be
decrypted with a key, allowing the token to be verified and decoded by the
resource server.

Let us extend our requirements and add some points about API responses. We will
call it Business logic requirements:

•	 API should answer with the hashed string that we will call token if login and
password are correct. Answer code – 200.

•	 If the login or password is incorrect answer code should be 401 (which means
literally that it is unauthorized). This code is standard for unauthorized
request.

•	 The refresh token should be used to regenerate a new token every 60 minutes.
•	 If none of the tokens are valuable - redirect the user to the login page.

This is a good fallback option to ensure that users cannot continue to access
resources without valid credentials. However, it is important to consider
how you will handle situations where the user’s session has timed out or
the refresh token has expired. In these cases, we can provide a specific error
message or prompt the user to log in again. In our case we will not do that as
its out of the scope of this book

Using all requirements we can start with coding. But before that also using
requirements we need to cover our code with all possible tests.

Writing tests for the authorization form
The application requirements are the best approach to start with the test development.
But first of all, let us talk a bit about what is tests means.

In software development, there are not many ways to achieve the point when we
can understand that an application or even a small part of it is ready and up and
running. On one hand, we can check the requirements manually each time when we
do changes or updates. On other hand, we can automate this process and not waste
time on paperwork. To save time and have more safety we should create the tests
that cover our requirements point by point.

Let us look at our General requirements from the upper scope. The requirements it
itself is produced in the same pattern as we need to create the test:

<Name	of	the	logical	part>	=>	<should	have	current	result>

64  Next.js Cookbook

For example, we have the requirement “Possible	state	of	the	form	=>	Login	form	
with	error”. That means that we need to create the test that will cover provided
logic like this:

If	we	have	the	error	in	the	form	=>	This	error	should	be	stored	in	the	
form state

Pretty simple and this is a good part of testing the application before coding. It is
pretty simple as it is covering the provided requirements from the human text into
the programming language.

From unit test to NextJS component
In the development flow, there are no strict rules on what requirements should be
made first. We will stick to the rule “From smaller to bigger” and the order of test
development will look like this:

•	 UI requirements
•	 General requirements
•	 Business logic requirements

The motivation for this ordering is that we will produce tests from smaller
components to bigger logical parts.

Following the TDD way in creating components
We will start with UI requirements and will follow them in the test driven development
way of creating. Atoms say that we need 3 elements in there so let us make the
test that will expect these elements exist. Also, we will create one more helper file
that will contain the placeholders for all possible inputs. These placeholders we will
use as a query selector for the test (you could use any identification that is more
convenient for you, this is not mandatory).

In the core folder, we will create the configs folder with the index file inside. Put this
code inside to create the configuration for the placeholders and the labels as shown
in Figure 3.7:

Authorization in a glance with NextJS  65

Figure 3.7: Application configuration for the authorization

These enums already follow the UI requirements. Next, we need to create the unit
test file in the __tests__ folder. In this file, we will need to have this code to start:

Figure 3.8: Tests for the login form that we will use to create the form

66  Next.js Cookbook

If we start our tests now all of them will be failed. We expect components that still
do not exist in the system. Moreover, even if they will exist they should follow the
requirements and contain text inside. That means that we can proceed and follow
our first TDD requirements.

In the end our components will look like this:
1. Regular input component will contain the code that is presented on the

Figure 3.9:

Figure 3.9: Regular text input component

2. Password input component will contain the code that is presented on the
Figure 3.10

Figure 3.10: Password input component

Authorization in a glance with NextJS  67

3. Submit button component will contain the code that is presented on the
Figure 3.11

Figure 3.11: Submit button component

Now, if we run the tests all of them will be passed as we have required components
with required text inside of them like shown in Figure 3.12:

Figure 3.12: Console result with all tests passed

Let us proceed with Molecules and create the form component that should contain
our atoms inside and render the form. We will create the test that will check if the
component renders and contains the required components.

The logical trick is that we need to call the same test cases to check if the element
is exist in the layout. To optimize it let us create the test object that will contain
elements that will be reused like the following figure:

68  Next.js Cookbook

Figure 3.13: Test code organization to optimize tests

We will use functions instead of direct calls as we do not have any rendered elements
on the screen at the start of the test, we need to render something first. To avoid any
errors here we can use the function that will take a screen as a parameter and check
on the call stage. Also we will need the function that will cover any expectation
depending on what object element is currently covered. That function will look like
the following figure:

Figure 3.14: Expectation sentence after optimization

After that, we can change our previous tests to use this object and function as shown
in Figure 3.15:

Figure 3.15: Resulting test code that can work with any kind of input components

Authorization in a glance with NextJS  69

The full file with the test will also contain the new test that will contain the logic to
check if all elements exist in the layout: (Figure 3.16)

Figure 3.16: Full code of the test to cover all possible inputs for the login form

70  Next.js Cookbook

As we started to test it - it will be failed as there are no such elements in the layout.
So we must create them in the LoginForm file to follow the test requirements like
Figure 3.17:

Figure 3.17: Login form starter to pass the tests

Let us update the test object as we have a requirement regarding the error layout
existing in the form.(Figure 3.18):

Figure 3.18: Adding the error element into the testing objects

Here we will use a special identification that will be used only for tests. In the form
this layout will look like the following figure:

Authorization in a glance with NextJS  71

Figure 3.19: Adding the error element into the form

Also do not forget to update the configs with a new enum that will contain the ids
for the tests. Put `ERROR	=	‘error’` inside of it.

Now we can try to test it again and the tests should also pass all the requirements:
(Figure 3.20)

Figure 3.20: Success result for the application tests

For now, we cannot cover the style test without an actual render of the component
but we will come back to it in the next chapters where we will cover the E2E test
topic for the application. Also, we will come back to extend these tests in the chapter
about state management.

72  Next.js Cookbook

We can proceed with General requirements and extend our tests to fit them too. The
only possible to test without render cases is a type of language that will be in the
input value and the maximum length of the value. To complete our tests with it we
need to extend our test file and add some logic to it. First, let us add the function that
will generate a random string with characters and numbers like Figure 3.21:

Figure 3.21: Function to generate a random string

Now we can put this value into our input to check what is inside of it. In the test
itself, we need to check - if the language is wrong then the value should not be
changed like the following figure:

Figure 3.22: This is how we will check the type of language. In this example, we use the Russian
word. Only English words are acceptable for the login

Now as you see the test will check if the language is not English then it should not
change the value of the input. For now, the test will fail as we do not have such logic
in the input. We need to extend our text-input component to provide such logic as
this in Figure 3.23:

Figure 3.23: Expression to follow test requirements

Authorization in a glance with NextJS  73

Having this logic in the component we will check if the requirements fit then we can
change the input value. As you can see, we did not provide the function isLetter
and we need to provide it. Let us create the folder in our core that will be named
“utils.ts”. This file will contain all utility functions and helpers for our application.
This file will be like this as Figure 3.24:

Figure 3.24: Test to cover that string is not contain any special characters

As you can see we will check if the provided string does not contain any characters
that are not English or numbers or whitespace. The updated input component will
look like this if we will implement this logic inside: (Figure 3.25):

Figure 3.25: Full text of the component for the login

74  Next.js Cookbook

And the updated tests will look like Figure 3.26:

Figure 3.26: Full text for the test of login input component

The login input is fully covered with possible unit tests and can be safely used in our
application. Now we need to use the same way to update the password input. The
component will look like the following figure:

Figure 3.27: Full text of password component

Authorization in a glance with NextJS  75

And finally, the UI tests file will look like Figure 3.28:

Figure 3.28: Full text of the test file after all updates

76  Next.js Cookbook

And if we try to start them all tests will be passed as illustrated in Figure 3.29:

Figure 3.29: Success result for the tests

Debugging tests while developing
Sometimes we need to do some debugging as we do in any JS code. The
difference is that doing the test with Jest we cannot see anything in the browser
and do not have a console. But this problem is easy to solve with the VS Code
extension that can be grabbed here by this link https://marketplace.visualstudio.
com/items?itemName=Orta.vscode-jest. Wising this extension we can put the
breakpoints in the test like Figure 3.30:

Figure 3.30: Debugging points that will trigger stop at point

Authorization in a glance with NextJS  77

And after that, we will have the possibility to do a debug by selecting it in the
dropdown menu like the following figure:

Figure 3.31: This is how you can enter debug mode

If you will start it then the plugin will generate the interface with debugging tools
to follow all possible debugging steps. You can see it at the top and right part of the
screen in the following image:

Figure 3.32: This is how debug break points are looks like

The stop on a breakpoint will provide you with all possible information to figure out
how to proceed with the current breakpoint like Figure 3.33:

78  Next.js Cookbook

Figure 3.33: Information that is provided at the break points

Choosing the next steps way
The authorization itself is not only the form to login but the whole system environment
that is connecting a frontend with API and even in the frontend, there are a lot of
things that we need to cover. In the next chapter, we will proceed with it but now
let us discuss modern ways of API construction as in NextJS we can create full-stack
applications using any possible way of the realization.

Advantages of the REST way authorization
Here is a pretty simple answer for the advantages:

•	 It is easy to monitor as there is not only 200 OK answer from the API
•	 It is possible to create a micro-service architecture and scale your API service
•	 It is possible to cache your requests
•	 Do not require additional software and can be easily implemented using

NextJS server-side possibilities (as it is regular NodeJS application) and
because of that can be done even without a database in the system.

On the other hand, for the client-based applications, we could do a lot of API changes
before going live, and all these changes will require changes in the API.

Advantages of the GraphQL way
authorization
In the GraphQL way, some points could be critical when we do a decision:

•	 It automatically syncs all documentation on any schema change so we do not
need to document it manually.

•	 The data can be fetched with one API call instead of multiple calls.

Authorization in a glance with NextJS  79

•	 All schemas can be changed on the fly and do not require complex deployment
from both sides.

But it can be overkill for the small apps and also require more servers at the API side
as we need an Apollo server. Also, it is easy to DDoS if we miss access somewhere
and the hacking software will be able to create the nested call. This point could
create a security issue if we miss some points in the deployment stage.

In this book, we will create a universal solution that will use a model pattern that
could be used for any kind of API no matter what we choose.

Conclusion
In this chapter, we started with a very important topic that we will use in the whole
application that we will develop in this book. Also, the important thing is not only
to write a code but to understand how to start and what to do before coding. What
to do before creating an application and what safe tests should and must be done
before any code is created.

We now know that authorization is not only the login (or log in and registration)
forms, it is more than that and requires accuracy and patience to complete the task.

In the next chapter, we will talk about the server side of NextJS and we will create
the API for our application.

After that, we will touch on the topic of state management and in this part, we will
be able to complete the task with authorization to the end.

As you see, the authorization at the glance will require a lot of knowledge, but no
worries - everything will be covered soon. See you in the next parts.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

With great power comes great responsibility

 — Ben Parker

Introduction
In this chapter, we will introduce the part of NextJS that makes it dominate in
comparison with all possible competitors in front-end development. In this chapter,
we will create the backend API that could be used as backend-for-frontend or as the
only backend for future applications.

Why would we need this possibility at all? We must always keep in mind that the
browser is not hiding the network history so we can see what request was triggered
and what host was used for it. That could be a problem with DDoS attacks and XSS
attacks and in the end, could produce a data leak that also can become a problem.

Chapter 4
Server-side power of

NextJS

82  Next.js Cookbook

Figure 4.1: Network activity form the amazon web site

For example, in Figure 4.1 we can see all requests on Amazon.de. From now on we
can do anything we want with these endpoints. To reduce vulnerability, we could
proxy all requests from different places. To achieve that we can use the backend-for-
frontend way and not show what requests real we will do and what real response
we will get.

Structure
•	 Using NextJS as an API server
 o Creating simple NextJS API routing structure
 o Writing simple API in NextJS
 o Generating authorization token for user
•	 Using Singleton, Builder and Strategy patterns in API construction
 o Baking Singleton for API
 o Baking Builder for API
 o Backing Strategy for API
•	 Using Apollo client for NextJS
 o Creating models for your NextJS application
•	 Writing connecting system for Apollo
 o Reusing API from previous recipe for Apollo?
 o Setting up Apollo client for NextJS

Server-side power of NextJS  83

Objectives
In this chapter we will learn how to use a server side possibilities of the NextJS to
use at as a full-stack platform that have a frontend and the backend. We will also
reuse knowledge of the design patterns to create the maintainable and scalable code
for the application and also will create and connect Apollo server to our application.

Using NextJS as an API server
We do not need any particular setup or configuration to use this feature in the
framework. But as you remember we made a configuration for the whole project
and have page extension requirements. We can use this extension for API fails but to
make them more readable let us add something into the configuration in the next.
config.js file as shown in Figure 4.2:

Figure 4.2: Required changes in configuration to use framework as REST API

We will add api.js/ts requirements into the configuration. This will help us to
create a more beautiful URL for the API as shown in Figure 4.3:

Figure 4.3: Response of the api using new configuration

Creating the simple NextJS API routing
structure
In the previous chapters, we were making the authorization form that will require
an API call that will allow the user to enter the private area. We will stick to this task
when we make a simple routing structure.

84  Next.js Cookbook

As all our API endpoint files should be located in the API folder let us create the auth
folder inside and create several endpoints as shown in Figure 4.4:

Figure 4.4: API folder structure that we will use for the application

We added 2 endpoint files. Inside hello.api.ts file place code from Figure 4.5 to make
these endpoints work:

Figure 4.5: Code source for the api endpoint files

Now when we will try to enter the endpoint in the browser (or any application to
check REST requests like Postman) we will see this in the response (Figure 4.6):

Figure 4.6: Response for the login url call

Server-side power of NextJS  85

Creating the simple NextJS REST API
To have a well-architecture REST API, we should remember that all our calls should
be separated to have GET, POST, UPDATE and DELETE requests. The type of request will
come in the handler function parameter req. To use it we can call req.method like in
the following figure:

Figure 4.7: Example of how to separate different types of HTTP call

Let us stick to the login endpoint. For now, we will use only the POST type to send
login and password into the API and get the result from it that will contain rejection
or the authorization key that we will use in further requests. We will use the same
way as we did for the frontend part and create the core folder that will contain
business logic for the API. We will need it to make the API at the NextJS side more
abstract to have the possibility to use the API as backend-for-fronted and as a stand-
alone API with the same code base.

Now to create our first simple API endpoint let us follow these steps. Create the
configuration file in api/core/ folder and name it configuration.ts. Put this code
into it. We will need the enum with default messages for our API in the following
figure:

Figure 4.8: API configuration file source

86  Next.js Cookbook

After that, we can add this code to the login.api.ts file in the following figure:

Figure 4.9: Login endpoint code

To test all REST requests we will use the Postman app (you can use any that is
more comfortable for you). This is what will be for the POST request shown in the
following figure 4.10:

Figure 4.10: Test of the API call in Postman application for the POST request

Server-side power of NextJS  87

That is what we will see for the GET request shown in the following Figure 4.11:

Figure 4.11: Test of the API call in Postman application for the GET request

The “No	such	request” message that we provide from the configuration.

Generating an authorization token for the user
For the authorization API, we will need the token key that will be used whenever we
will need to get something from the API inside the personal user area.

To complete this task we will need a simple string generation function. In real-life
applications, we would need to encode and prepare with some business logic the
token. We will not stick to it as it is not part of our topic. For now, we need some code
that will be unique. For this let us create the utils file where we could store functions
like this shown in the following Figure 4.12:

Figure 4.12: Function for the random token key generation

88  Next.js Cookbook

We can try this function as shown in Figure 4.13:

Figure 4.13: Result of generateToken function call in browser console

As we can see - now we have a random string token that we could use for the login
API.

Using Singleton, Builder, and Strategy
patterns in API construction
As we learned from previous chapters, using the patterns will help us create readable
and maintainable architecture that we can change or scale by request. So let us speak
about where to start and what design we will use for each action and property.

The list of patterns by the requirements will look like this:
● Singleton for login request and login state
● Strategy for the request type (as we will need a possibility to connect to an

external API)
● Builder for the user profile build

Baking Singleton for API
We will start with file creation and the name of the file will be login.service.ts.
This file will contain the login call as a function and login state. We will also make
the condition private so we will need the getter function. (Figure 4.14):

Server-side power of NextJS  89

Figure 4.14: Login singleton code

For now, we do not have any business logic for login as we will need to make the
login itself in the subsequent implementation with Strategies. After that, we will
come back and add this logic to our Singleton.

Baking Strategy for API
As we declared before a strategy pattern is required to separate possible ways of
getting the data from the data source and keep the logic structure the same. Let
us create the file with the name login-strategy.ts. Inside we will develop the
strategy class that will be called LoginContext with the login method inside. As we
need to use the same structure we will create the interface ILoginStrategy also. We
will require to make the mocks as we did it before also.

90  Next.js Cookbook

Let us start coding. First, we will create the mock data. To complete we will follow
the steps:

1. Create the file with mock data in the folder where we store mock data for the
application.(<root>/pages/mocks)

2. Create file users.json and fill it with the data from Figure 4.15:

Figure 4.15: Mock data for the users

3. After that we can connect mock data to the application as its presented on
Figure 4.16:

Figure 4.16: Connection of the mocks to mocking system

4. Finally, we can create the strategy context file that will use strategies for the
login. To achieve this please create the login-strategy.ts file in <root>/pages/
api/core folder and fill it with code from Figure 4.17:

Server-side power of NextJS  91

Figure 4.17: Context file source that presents a strategy context

This is what the strategy context will look like. We will use a defined strategy class on
construction calls. For our case we do not have any data source except local mocks so
we will require this concrete strategy: (Figure 4.18):

Figure 4.18: This is an exact strategy class code that will be used for the API

Now we can update the service but before that do not forget to add the required
interfaces to not use any in this case as shown in Figure 4.19:

92  Next.js Cookbook

Figure 4.19: Interfaces that will be used as a class types

To update the service we need to change LoginService class and add token param
like the following figure:

Figure 4.20: Updated code for the login singleton

Server-side power of NextJS  93

Also, let us do some changes in the configuration file to have the login type scripted
like the following figure:

Figure 4.21: Updated configuration for the login

Perfect. We can now implement this service into the login component we made
before. But before we switch to implementation let us proceed with the builder.

Baking Builder for API

As we planned before we will use Builder for the user account data as there could
be different types of users, permissions, and so on. Let us just wrap it with a builder
pattern to make it easier to scale if something will be changed.

Inside the builder, there will be several producers that will be responsible for each
type of user that we could want to create at the current state, as shown in Figure 2.22:

94  Next.js Cookbook

Figure 4.22: Builder class realization

As you can see we use the same code style as before so do not forget to create all
constants in the configuration as illustrated in Figure 4.23:

Server-side power of NextJS  95

Figure 4.23: Updated configuration to optimize builder code

We will also require changes in the data source as we now expect more data from the
source as illustrated in Figure 4.24:

Figure 4.24: Update in the users.json file

96  Next.js Cookbook

Now we need to make the last modifications in the service to get the builder into the
working state as shown in Figure 4.25:

Figure 4.25: Singleton update to properly login user

As you can see login method now operate with builder methods and create all
required data inside of it.

Let us switch to the UI form. Inside of it, we will need to get the data from the inputs
and send them into the service. So, your login form component should look like as
illustrated in Figure 4.26:

Server-side power of NextJS  97

Figure 4.26: Login for component code

98  Next.js Cookbook

Now when we try to log in with credentials, we will fill the service data singleton.
That means that we could use this data on each page (if we do not reload the page).
To solve this problem, we will use one of the ways to store data in the browser but
for now it is enough to have the data itself.

To check that data is still in instance update the login page with the link to the main
page will appear as Figure 4.27:

Figure 4.27: Login page component

Now on router change inside your console, you will see that the login service still
contains user data. That means that we can use this data for any purpose inside the
application as shown in the following figure:

Figure 4.28: Result of the login response in the browser console

Server-side power of NextJS  99

Using the Apollo client for NextJS
To start using the client we need to do a short setup to activate the server that we
could use for the requests to get the data from the GraphQL requests.

Apollo Server is working the same way as any regular node server software (for
example : Express or similar). To start setup we will need to create a folder and
install it. We recommend doing it in the same project folder for education purposes
and in a separate folder for real-world applications.

Enter the command as illustrated in Figure 4.29: in your console to create the required
folder:

Figure 4.29: Commands to create the folder for the GraphQL server

After that we need to init npm project by entering the command shown in Figure
4.30:

Figure 4.30: Command to init the application

Now we can add required dependencies to our server using npm as illustrated in
Figure 4.31:

Figure 4.31: Command to install the server in folder as package

Creating the model for the NextJS application
As for now, we need only users we will create the Scheme in Figure 4.32 this to
operate with users:

100  Next.js Cookbook

Figure 4.32: GraphQL schemas for the users

Writing the connecting system for Apollo
Let us create the server index file (like we do for any node js server). Create the
index.js file in the server project root (use CLI or your IDE for it). Inside this file, we
can create the schema and queries to get the data.

Figure 4.33: Server file source to start the Apollo server locally

Server-side power of NextJS  101

To be more specific here we will go through this file together step by step:
1. const users: here we are getting data from mocks that were created before.
2. const typedef: this is a GraphQL Scheme that we will use in the application.
3. const resolvers: this is a definition of actions that will be triggered by query

call from the Scheme.
4. const server: this is a server instance where we connect all together .
5. server.listen: is a function that starts the server instance.

Now after the application start (type: node	index.js in your console) we will see as
shown in the following figure:

Figure 4.34: Success response log in the console after server start

To check that server is up and running we will open a sandbox here https://studio.
apollographql.com/sandbox and follow the instructions to add your current local
host into the sandbox like in Figure 4.35:

Figure 4.35: Sandbox page that we will use for the testing

102  Next.js Cookbook

After that we can execute our first query by adding the following data into the query
frame of the page (Figure 4.36):

Figure 4.36: Query frame in the sandbox

Now on pressing the Run button at the right top corner we will see the result as
shown in Figure 4.37:

Figure 4.37: Result frame in the sandbox

As you can see we got the correct user data.

Keeping in mind that we are making basic login and in the real application you should
not keep a real password in the database as should never send a real, not encrypted
password as a parameter from the form. Please check specific documentation about
this topic. For this book, this subject is out of scope.

Server-side power of NextJS  103

Reusing API from the previous recipe for
Apollo
As you remember in the previous part we made a strategy pattern and we made it
for the purpose. So now to reuse the same logic we need to add a new strategy class,
with only one update that would be required. As we will use GraphQL request we
would need to add async/await to methods that are already in the system.

First, we need to add Promise to the login method in the login strategy interface as
illustrated in Figure 4.38:

Figure 4.38: Updates that will be used in login strategy class

Then we will need some updates in the login service as illustrated in Figure 4.39:

Figure 4.39: Adding the async/await functionality for the login method

Now all login flow will be asynchronous and we can add the new strategy using the
Apollo client as illustrated in Figure 4.40:

104  Next.js Cookbook

Figure 4.40: Login with GraphQL strategy class

Having this class, we can update the configuration for the API like this to activate
the new strategy as illustrated in Figure 4.41:

Figure 4.41: Configuration update for the GraphQL realization

As you can see we have a minimal update in the code. Also if we will need to add a
new strategy it will require a minimum of updates in the code.

Setting up an Apollo client for NextJS
To add the Apollo client to your application we will first need to add it to our project
similar to what we did for the server as shown in Figure 4.42:

Server-side power of NextJS  105

Figure 4.42: Commands to add Apollo client to the project

When we successfully added the Apollo to our dependencies we can create the client
that we will use in the application. To do it please create the file named apollo-
client.js with the following code:

Figure 4.43: Source of the apollo-client.js file

The URL in Apollo Client object parameters is the URL of the server that we created
before. If you deployed it yourself (or had a server before) please use this URL in
this configuration.

Now we can open the login form page and try to log in again with the same
credentials. And console should return the same information as before as shown in
Figure 4.44:

Figure 4.44: Result of the api call in the browser console

106  Next.js Cookbook

Conclusion
In this chapter, we have been introduced to the server-side potential of NextJS. This
knowledge will allow us to create any kind of API using NextJS only no matter what
purpose we need. As you can see the server side of the NextJS is similar to a regular
NodeJS application and can reuse any logic from your Express application for
example. Also now we can choose between the type of the API, REST or GrapthQL.

In the next chapters, we will do research in the state management area to make using
any data on the client side more smooth. We will also be introduced to AWS Amplify
for the API creation where we could use the knowledge from this chapter about
GraphQL and REST.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
Sooner or later the application will start growing, ant number of components also. As
a developers we would like to have a system to communicate between components
faster and in the same time have a possibility to debug the data that is passing from
one component to another. For these purposes we will need a state management
system that we will discover in this chapter.

Structure
•	 Using state-management tools in applications
•	 Setting up Redux in NextJS
•	 Writing tests for the store before we start coding
•	 Creating Redux store objects in NextJS
•	 Using the store for authorization in our application
•	 Connecting data API to state management
•	 Conclusion

Chapter 5
Using state

management in
NextJS

108  Next.js Cookbook

Objectives
This chapter will teach how to add and use the state management system. As
an example system, we will use Redux as the most efficient and popular state
management system for ReactJS. Also, we will walk through the flow of creating a
store and code tests for the store and connect the store to the API from the previous
chapter.

Using state-management tools in
applications
The architecture of web applications is not only in data structures and data design
patterns. We also need to think about how to operate data between components and
react to data changes in these components. We need to create the mechanism that
will make the state of any object and follow the state machine principles.

In the web application world, we have several libraries for different platforms. As
NextJS is based on React we will use Redux as a state management system.

In our application, we will need it to share the login information. Also, we will add
the kitchen system to order and cook the burgers we made in previous chapters.

Setting up Redux in NextJS
Redux is based on three principles:
•	 	Single source of truth: The state of an entire application is stored in a

single object tree within a single store.
•	 	State is read-only: The only way to change the state is by dispatching an

action, which is a plain JavaScript object describing what happened.
•	 	Changes are made with pure functions: To specify how the state tree is

transformed by actions, you write pure reducers.

To add Redux to our project type following commands in the folder root: (Figure 5.1)

Figure 5.1: Commands to add Redux to the project

Using state management in NextJS  109

Writing tests for the store before we start
coding
As you remember, we use the test driven approach in this book to create an application
and any modules for the application. Implementing Redux will not be an exclusion,
but we have to introduce some things that will help you to more clearly understand
the whole way of using Test-driven development with Redux.

For the start, we will require to make some changes in the folder structure of the
application. Please add the store folder to the pages folder. Inside the store folder,
we will require __tests__ folder as well to collect the tests for the Redux store as in
Figure 5.2:

Figure 5.2: Updated folder structure to collect Redux files

Inside these folders, we will create our first files that will correspond to the auth state
for the application, like in Figure 5.3:

Figure 5.3: Files for the auth state

110  Next.js Cookbook

In the specification file, we will add this code to start creating the tests. For now, it
will pass but we will remove the rule for test in the next steps: (Figure 5.4)

Figure 5.4: The code from authSlice.spec.ts file

Also, we will require to fill the store file with the code illustrated in Figure 5.5:

Figure 5.5: Code for store file

We will add enough code to compile but stick to the rule that complete code should
be written after the test file is ready.

We will add the code into the store file to have something compile like Figure 5.6:

Using state management in NextJS  111

Figure 5.6: Minimal code to compile the store

We need to modify the reducers part to have a dummy reducer that will change the
state of the auth like Figure 5.7:

Figure 5.7: Code update for the reducer

112  Next.js Cookbook

Now we can create the first test that will fail (in our case because we will make it fail
for now). The code is described in Figure 5.8:

Figure 5.8: Test file code, that will be failed for now

Now on the test start, we will get the message about failing the test like in Figure 5.9:

Figure 5.9: Failing test message

Using state management in NextJS  113

To pass the test we need to modify the reducer to change the state with an action.
Please change the reducer code with the code provided in Figure 5.10:

Figure 5.10: Updated reducer to pass the test

Now when we try to start the test again we will get this result: (Figure 5.11)

Figure 5.11: All tests are passed and green

114  Next.js Cookbook

Creating Redux store objects in NextJS
To connect the store to our application we will need to create some objects. To achieve
it we will make some updates to the file structure and application files.

First, we will create the index.ts file in the store folder root like Figure 5.12.

Figure 5.12: Index file in the store folder root

Add the code from Figure 5.13 inside this file:

Figure 5.13: Source of the index file

Let me explain a little about what we have inside this file. First, we need to configure
the store itself and we will use the configure store function for it. As you remember
we created the object in the auto slice that contains the name, actions and reducers.
So, we will use the name as a string and reducer as the reducer for the store. Also, we
will add a property devTools to get the information in the special browser extension.

Using state management in NextJS  115

One line can be confusing it is the line from Figure 5.14:

Figure 5.14: Strange part of the file

This makeStore function is required by the wrapper function for the NextJS. This
code is only needed if you use the framework. In regular React applications, it will
not be required. So just copy and paste it from the example.

Next what we need to add the possibility to use hooks for the store. To add this
possibility to the application we will create a folder with the index file inside. It is
not part of the store as we could create and add hooks unrelated to the Redux.

Please check Figure 5.15 to make changes in your folder structure:

Figure 5.15: Hooks folder and index file

Inside the index file, we will add this code to make hooks work for the application:
(Figure 5.16)

Figure 5.16: Hooks file source code

Now we are ready to add the store to the application. Let us do some changes in the
app file of the application like in Figure 5.17:

116  Next.js Cookbook

Figure 5.17: Application file source with added store

Now we can check if everything is correctly set up. To make it we can use
the Chrome extension (or you can find the same for Firefox).You can install
it at this link https://chrome.google.com/webstore/detail/redux-devtools/
lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en. The extension should look like in
Figure 5.18:

Figure 5.18: Chrome extension to debug Redux in the browser

Using state management in NextJS  117

Now after the page reboot we can open the developer tools and select the Redux
extension. There will be information about the current store that we have like in
Figure 5.19:

Figure 5.19: Redux debug information for in developer tools

Using the store for the authorization in our
application
To do it we will do some changes in our code. First, we will rename the logged-in
state in the strategy interface to fit the store object naming:

Figure 5.20: Change state name to isLoggedIn to fit the naming

Next, we will need to update the store to collect more data for the user. To achieve it
we will update Auth type in the store like this:

118  Next.js Cookbook

Figure 5.21: Update the store type to fit the requirements

Do not forget to update the initial store as listed in Figure 5.22:

Figure 5.22: Initial store update

To use the state of the login we need to do changes in the login service to make the
state return from the method. Check Figure 5.23 for the solution:

Figure 5.23: Updated login method in the service

Using state management in NextJS  119

Now, we can open the login form file and update the loginAction function to get the
state of the login after the method is triggered. As the login method is async we need
to change the loginAction type to async listed here:

Figure 5.24: Form login method update

After that, we will need to add a dispatch call to change the state. To do it open the
login form file and add this as shown in Figure 5.25:

Figure 5.25: Functions required to proceed

Now, the loginAction function can dispatch the state and provide it in the action
like this:

Figure 5.26: Updated loginAction function

120  Next.js Cookbook

Finally, when we will try to log in again in the login form we will see the changing
state history in the developer tools extension as shown in Figure 5.27:

Figure 5.27: State history in the Redux tools

Connecting data API to state management
In our architecture, we do not have direct API calls because we use configurable
strategies. But it is good news for us anyway. To connect API calls to the state
management we will need to use middleware as the best practice solution.

Please follow Figure 5.28 to update the store with middleware example:

Figure 5.28: Update for the store/index.ts file

Using state management in NextJS  121

After this update, each action call will be wrapped with a middleware function. We
can filter actions and call different methods of service. As an example, we will add
code from Figure 5.29 to the login service.

Figure 5.29: Dummy function to call it as an API call

After the page reloads we can try to log in again and that is what we will see in the
browser console:

Figure 5.30: Text in the console that we added to the service method

Now we can add as many API calls to the store as we want, depending on the action
name. We can also provide the payload in the middleware function parameters so
we could filter actions also by the payloads.

Conclusion
In this chapter, we learned how to connect the state management system to our
NextJS application. We managed to use Test Driven Development and also figured
out that for the API calls in the store we use the middleware instead a direct call from
the reducer.

In the next chapter, we will use all the collected knowledge to create more internal
pages for the application.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
We did a great job in the previous chapters. But now it is time to step to the next
level and create the system that will allow us to develop and publish internal pages.
We will use all the knowledge that we get from before. For the exercise, we will
not touch GraphQL possibilities in this chapter and use simple data fetch. We will
do this because in the next chapters we will connect our application to the AWS
Amplify environment and this part will be redundant.

Structure
•	 Creating the publishing system for the food blog. Basics
•	 Mocking list of articles and article description page
 o Creating mocks for internal pages
 o Splitting internal pages into components
•	 Creating the application structure and router for application pages
•	 Creating atoms and molecules

Chapter 6
Implementing

internal pages using
NextJS

124  Next.js Cookbook

•	 Creating the TDD flow for all coding structures
 o Writing tests for page components
 o Writing tests for store
 o Writing tests for API
•	 Creating some API endpoints for the application
•	 Creating internal application pages
 o Creating an article list page
 o Creating an article item page
•	 Creating a CRUD system for articles
 o Separate public and private areas with NextJS
 o Redux store for data state and edit
 o Updating data in API
•	 Creating a multilingual tool for application in NextJS

Objectives
In this chapter, we will introduce how to start creating the publishing system from
the very beginning. We will follow the guidelines, that we used before for mocking
and test-driven development. Also, we will connect state management and API.
And in the end, we will add the possibility to create a multilanguage application
using NextJS.

Creating the publishing system for the
food blog
Before we start our creative journey, let us agree on some requirements that will be
used in the publishing system design:

•	 Each publication (we will call it an article) will be connected to one user.
•	 Each user can have an unlimited number of publications.
•	 Each publication will have a title, short description, text, and date of

publication. (In the real-life application we will also have some images but
to add this feature we will need an additional image server and so on. For
our example, we will have only these text fields)

Implementing internal pages using NextJS  125

•	 The application will have an articles list page where all articles will be shown
one by one unit, using the title, the description, and the publication date as
content.

•	 By clicking on each article block user will be directed to the article page
where he will see the article with the main text.

•	 To add the article to the navigation panel we will add the button to add the
article.

•	 All new articles will be sorted by the publishing date without any other
prioritization

•	 If we logged in as an article owner then we will have the possibility to edit or
remove the article from the system. To add this functionality there should be
special buttons for this in the list for each article and also in the exact article.

Mocking - List of articles and article
description page
Now we have the requirement list we can start to create mocks for the pages. Let us
assume that some functional elements will be visible only after authorization (like
add, update, and delete buttons). We will separate each element using the atomic UI
system as we did in previous chapters.

Until now, we do not store the state in the browser’s local storage or any other
storage. There are several different ways to solve this problem but it is out of the
scope of this book.

To not reset the auth data we will simply store it in the local storage and use it on the
application load. This way is not effective for a real-world production application.
Please use any persist library for it or use the database of the browsers.

Creating mocks for internal pages
We will start from the article list page. On this page, we need to have several
elements to the requirements. But as we have more than 1 page now we will add the
navigation layout. Also do not forget that there will be an element that will be shown
only after user authorization. Check Figure 6.1 to see the mock for the article list that
will be shown to the unauthorized user:

126  Next.js Cookbook

Figure 6.1: Articles list page for the unauthorized user

Please keep in mind that we do not have a logout function in our current system.
Because of that, we will just show the add article button after login. Please check
Figure 6.2 to see the article list after the user login.

Figure 6.2: Articles list page for the authorized user

Implementing internal pages using NextJS  127

The whole article block will be clickable to enter the current article. That means
we will not need any other navigation elements. As you can see we have ‘Edit’
and ‘Delete’ buttons in the list. The same buttons will be duplicated on the current
article page. Please check Figure 6.3 to see how the current article page will look for
the unauthorized user.

Figure 6.3: The article page for the unauthorized user

The same for the authorized user can be observed in Figure 6.4:

Figure 6.4: The article page for the authorized user

128  Next.js Cookbook

For the article edit, we will use a simple modal widow and form inside. You can see
the mock in Figure 6.5:

Figure 6.5: Edit article modal window

Splitting internal pages into components
To follow the atomic design pattern we need to separate everything into elements.
Let us start with the articles list page to figure out what components we can create
from it. On this page, we see a navigation bar that contains several atoms and one
molecule there.

Figure 6.6: Navigation bar separated using Atomic pattern.

Implementing internal pages using NextJS  129

As you can see in Figure 6.6 we will need to create the link to the page atom that
will have visited state (bold font), the separator element between links. And also the
add article button. This button will have an unauthorized state and lead to the login
page. All these atoms will be wrapped by a navigation molecule that will have the
bottom border and contain all the elements for the page.

The next part is the articles list and which can be observed in Figure 6.7:

Figure 6.7: Article element molecule

As we can see we will need atoms for the title, description, and date. Also as the
buttons for edit and delete. The atomic way of separating will help us to reuse atomic
elements in other molecules. We can see it in Figure 6.8 for the exact article page.

Figure 6.8: Exact article molecule

130  Next.js Cookbook

As you can see we can use the title, date, and buttons from the atomic system that we
will create for the articles page. That will improve the maintainability of the system
in the future and also reduce the number of code lines of the application.

Finally, we can point out several components for the edit modal that you can see in
Figure 6.9.

Figure 6.9: Edit modal atoms

We made a great job here and have a full list of required components that we could
wrap with tests and make ready for production.

Creating the application structure for
application pages
The next step in our process will be creating the files for the UI system. In Figure 6.10
we can observe the result of previous research. We will create all required files in the
UI folder.

Implementing internal pages using NextJS  131

Figure 6.10: UI folder file structure after the Atomic research.

As in NextJS, the routing system is based on files we will need also to update the file
structure to work with article pages like the following figure:

Figure 6.11: Article pages structure update

Before we start implementing the UI we need to add some features to the system. As
you remember we will use a simple store for the auth state. To add it let us do some
changes in several files.

132  Next.js Cookbook

Add a file with the name local-storage.ts in the pages/core folder. Put code from
Figure 6.12 into this file.

Figure 6.12: Core file to work with local storage

Next step we will need to call the updateStorage function when we will have the
user data from the API. Make the login service function login same as presented in
Figure 6.13:

Figure 6.13: Updated login service

Implementing internal pages using NextJS  133

And now the main component file _app.page.tsx should be updated with the
following code:

Figure 6.14: Main component update

Now each time we do reload the page the login state is not gone anyway and always
exists in the application store as shown in Figure 6.15:

Figure 6.15: Auth state exists if we manually route to the main page

Creating atoms and molecules
We will start with more extensive parts and move to smaller parts so from molecules
to atoms. We will have a lot of elements that look and act pretty much the same so
we will put into text only more or less unique ones to have less identical code in the
text (for example we have several buttons, and the only difference is the label and
callback function). A good practice is to reduce the amount of the same code in your
codebase so we will try to follow this guide as possible.

134  Next.js Cookbook

Atoms
We will use Figure 6.10 as a list of required components that should be created. For
now, we will leave everything as abstract as possible without any concrete solution
to keep this example more focused on the process rather than on some amazing
result.

For the styles please create the file with the name Atoms.module.scss in the styles
folder.

The button for adding articles can be observed in Figure 6.16:

Figure 6.16: Add article button with mutable label

Implementing internal pages using NextJS  135

Please also add the styles for this component as in Figure 6.17:

Figure 6.17: Styles for the button

The dates will use this code for the display:

Figure 6.18: Dates component

136  Next.js Cookbook

Figure 6.19: Styles for the dates component

The article title, description, and text will be combined with editing elements to have
a group inside of the atom that is solving one task depending on the state that will
contain a flag if we edit the element or not.

For the article title component use code from Figure 6.20. As you can see we separate
the view for not authorized and authorized users. We will add a store for these
components later.

Figure 6.20: Article title component

Implementing internal pages using NextJS  137

Add this style to the styles file.

Figure 6.21: Styles for the input element

The article description is the same as the title in our example, so you can just copy
and paste the whole code. Do not forget to rename the component and properties
like the following figure:

Figure 6.22: Article description component

138  Next.js Cookbook

Article text is using textarea as an input like the following figure:

Figure 6.23: Article text component

Do not forget about styles and add this style input to your input class like the
following figure:

Figure 6.24: Textarea styles to insert into .input class

Implementing internal pages using NextJS  139

Let us move forward and create the close modal button like the following figure:

Figure 6.25: Close button component

Update the styles file with the class to add some styles to the button as shown in
Figure 6.26:

Figure 6.26: Close button class in styles file

The back-to-list button will look like this:

Figure 6.27: Back to list button

140  Next.js Cookbook

The styles for this button shown in Figure 6.28:

Figure 6.28: Style class for the back-to-list button

The delete article button will look like this:

Figure 6.29: Edit article button

Implementing internal pages using NextJS  141

Styles for this button will be also short like this:

Figure 6.30: Style class for delete article button

The edit button will be the same but with a different name of components and style
as shown in Figure 6.31:

Figure 6.31: Edit article button component

For style, we will extend the delete button but change the color. Now both buttons
are the same with only one difference as shown in Figure 6.32:

Figure 6.32: Style for edit article class

142  Next.js Cookbook

We also have a separator between links in navigation:

Figure 6.33: Separator component

The styles class for this component will look like this:

Figure 6.34: Separator component style class

The last component in the list will be the navigation link and the code is in Figure
6.35:

Figure 6.35: Link to the page component

Implementing internal pages using NextJS  143

Styles for this component are in Figure 6.36:

Figure 6.36: Style class for the link to the page component

Molecules
The navigation bar will contain the code from Figure 6.37:

Figure 6.37: Navigation bar component

144  Next.js Cookbook

Styles for this component are listed in Figure 6.38:

Figure 6.38: Style class from the navigation

For the article item in the list use the code listed in Figure 6.39:

Figure 6.39: Article list item component code

Implementing internal pages using NextJS  145

Add these styles to the atomic styles file:

Figure 6.40: Styles for the article list item component

Now we need to do updates in the Edit button component and add a modal there.
Please collect the updated code in Figure 6.41:

Figure 6.41: Updated code for the Edit button

146  Next.js Cookbook

Please also add the following code to the styles:

Figure 6.42: The styles classes for the modal window

Implementing internal pages using NextJS  147

The last molecule is the Article Edit component. Code can be collected in Figure
6.43:

Figure 6.43: Article edit component

Creating the TDD flow for all coding
structures
The guidelines from the previous chapters are leading us to create tests first. We will
plan to cover article pages with short tests before we start creating the page then
cover the store and in the end, cover the API endpoints (for the last one we will do
some smoke tests as we do not need the full possibilities of the API in this chapter
because it’s out of scope).

148  Next.js Cookbook

Writing tests for page components
Because we do not have many elements on the page that appear without data
we will need to test only that component is rendered well as we did it before.
(Figure 6.44)

Figure 6.44: Render test for list articles page

Please add the code provided in Figure 6.45 to add a test for the exact article page:

Figure 6.45: Exact article page test

Implementing internal pages using NextJS  149

Writing tests for store
By design, we do not have any dynamic components on the pages. To have an
example, let us add the test for the selected article here. We will add it in the future.

Figure 6.46: Article`s state test

Leave it for now. We will come back to it in the future.

Writing tests for API
Please note that we will not create any functions for the API calls and in this section
will call the data directly from the mock using the API possibilities of NextJS. That
means that in this block we will skip the API test but come back to it in the E2E
section of the book.

Creating some API endpoints for the
application
To add the API endpoints we will need to add some folder structures as you can see
in Figure 6.47:

Figure 6.47: Articles file structure

150  Next.js Cookbook

For the article list we will use an index file with this code:

Figure 6.48: Articles list endpoint

For the exact article, we will use [pid].api.ts file with the following code inside:

Figure 6.49: Exact article endpoint file

Creating internal application pages
We are ready to create the pages as we have made all possible preparations before
we do a soft start. We have all the required tests and all required API endpoints.

Creating an article list page
To add the codebase to this page we need to do the update for the general view and
add the navigation bar to it. Update the navigation bar component using the code
from Figure 6.50:

Implementing internal pages using NextJS  151

Figure 6.50: Updated navigation barcode

Then please update the layout.tsx file with code that you will find in Figure 6.51:

Figure 6.51: Updated layout file

152  Next.js Cookbook

Now we are ready to implement the list page using the code from Figure 6.52:

Figure 6.52: Component code without data fetching

Implementing internal pages using NextJS  153

To fetch the data add the following code to your component:

Figure 6.53: Get server-side props function for the component

Create an article item page
Now we can create the article page using the same pattern that we used in the list
page. Please collect the full code of the internal article page from Figure 6.54:

154  Next.js Cookbook

Figure 6.54: Exact article page component code

Implementing internal pages using NextJS  155

Please also create the Article.module.scss file with these styles.(Figure 6.55)

Figure 6.55: Styles for the exact article

Now when you visit the articles page you should see the following figure:

Figure 6.56: Articles list page

After all manipulations if you make click on any article title you should be followed
to the page that will look like in Figure 6.57:

156  Next.js Cookbook

Figure 6.57: Exact article page

If we will not be logged in it will hide the action buttons and show the login button
in the navigation.

Creating a CRUD system for articles
It is time to bring some life to our application. We can see the list of articles and
also can enter each one. But we also need to have the possibility to have a UI for the
create and update actions.

Separate public and private areas with NextJS
To check if we have a strong separation let us remove everything from the localStorage
of the browser and reload the page. After that please visit the articles page (should be
something like http://localhost:3005/articles this link). Now to have a short problem
- the Login button is not active so we cannot get into the private area. To fix it we
need to add a small update to this button:

Figure 6.58: Update for the AddArticle component

Implementing internal pages using NextJS  157

Update the code in the AddArticle.tsx file using provided code from Figure 6.58.
After that, if you click this button you will be directed to the login form page.

Let us also structure the styles a little to make the login page look like the other
pages. Please add these styles to LoginForm.module.scss:

Figure 6.59: Update for the login page styles

Please also update the login page render part as provided in Figure 6.60:

Figure 6.60: Updated render part for the login page

158  Next.js Cookbook

After that you will see that the page looks a little bit better than before:

Figure 6.61: Small improvement for the login page

But we still have the lack of the process here as after the login nothing is happening.
To fix it let us route to the articles page after we successfully logged in. To achieve it
we will update the LoginForm component with route.push after the successful login
like in Figure 6.62:

Figure 6.62: Update for the login form component

Now after we do successfully login into the system we will be redirected to the
articles page.

Redux store for data state and edit
As you remember we are having the state test for the article that still not exists. Let
us change the situation and create the slice for it like in Figure 6.63:

Implementing internal pages using NextJS  159

Figure 6.63: Article state slice

Now in the VS Code if we open the article slice test file we will see that all tests are
passed and have a green indicator like in Figure 6.64:

Figure 6.64: Tests for the article slice

160  Next.js Cookbook

Now we can add some functionality to the add article button as we still do not have
a modal for it. Use this code to update the add article button to have the modal in it:

Figure 6.65: Updated article add button component

Implementing internal pages using NextJS  161

Updating data in API
We have enough interactivity for the internal pages so we can try to send some data
into the API. We will also do it directly in this lesson. To create the payload for the
action we need to store it somewhere. As you remember we store the current article
data in the store. We can use it for sending data into an API to save the data.

Please update your inputs with the code provided in Figure 6.66:

Figure 6.66: The code for input update

Use the same code for description and text components with only property changes
depending on the component name.

Now we need to add action to the save button. As you remember we are using
middleware in this example so any change in the store will be wrapped with an API
call. For the save button we just need to create the store update event and moderate
the action and payload.

Figure 6.67: Update for the edit article button

162  Next.js Cookbook

In the EditArticleButton component we need to make an update and put the
function of store change into the ArticleEdit component like in Figure 6.67. Now
each time we press the Save button store will be updated. We need to operate this
event in the index file like this:

Figure 6.68: Update of the API call event

Now when we press the save button we will see that API was called with payload
data inside like this:

Figure 6.69: API call in the browser console

Creating a multilingual tool for application
in NextJS
To add the multi-language possibility to the application we will need the library that
called React Intl. Use the following code to add the library to the application:

Figure 6.70: Commands to add the Intl library to the project

Implementing internal pages using NextJS  163

Next, in the root level of the application we will need the folder called “lang” with
files that will contain the language translations like this:

Figure 6.71: Folder with translations in the application root

Put this data inside each file depending on the name:

Figure 6.72: Translation strings in the JSON files

After that, we will need to add configuration to the NextJS. Please add the following
code to your NextJS configuration and restart the dev server:

Figure 6.73: Updated configuration code for NextJS

164  Next.js Cookbook

Next, step is to wrap the application with a language detection container. Please
update your __app.page.tsx file with the following code:

Figure 6.74: Update _app.page.tsx file

Finally, we can use the translations in our code. Let us add the string to the main
page like this:

Figure 6.75: Implement the translation string into the page

Implementing internal pages using NextJS  165

Now if we test the application the data on the page will look like this for the English
URLs:

Figure 6.76: English version of the application

On the other hand for the German language it will be like the following:

Figure 6.77: German version on the application

Conclusion
In this chapter we learned how to implement any internal pages from the very
beginning into the application using the test driven development flow. Also, it can
be multi-language pages. We can change the application language depending on the
user data that can come from API. Please do not stop at the border of the example
from this chapter and try to make more pages with more functionality. We will need
it in the next chapter where we will implement the E2E testing. That means the more
pages we have - the more tests we could create to cover the application. See you in
the next chapter.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
In the software development world, we know two possible ways of creating the
application. The first one - is to create the application just using the requirements
and local infrastructure. Second - make an application production ready from the
beginning. The first one -is keeping development in the fast lane, but the second
one - is keeping the application in the quicker delivery lane. From the business,
perspective delivery is what we want at the end of the day. Knowing this we will
follow the guides to create the production-ready infrastructure using NextJS as a
core framework.

Structure
•	 Prepare the application for the production release
•	 Choosing an End-to-End End testing framework
 o Setup Cypress for NextJS
 o Setup Playwright for NextJS
•	 Writing first e2e test with Playwright

Chapter 7
The superpower of

E2E testing in NextJS

168  Next.js Cookbook

•	 Creating more tests for the application
 o Covering the authorization
 o Covering internal pages
•	 Conclusion

Objectives
In this chapter, we will learn what is E2E testing, and why it is so essential, for
production-ready applications. We will compare the two most popular frameworks
that can be used with NextJS. Cover our application with tests and also we cover the
authorization of the user.

Prepare the application for the production
release
In this, we will create a flow chart that will visualize what environment and
infrastructure we need.

In Figure 7.1 you can find several lanes that represent the development steps from
idea to product.

To create the product we will behave as we did from the very beginning of this
book. First of all, we will investigate what we want to create and what problem
will be solved in the application. Then we will create the requirements plan and
wrap it with End-to-End mockups and fake data. After that, we can follow the test
driven development rules and create tests for each part of the application to proceed
with the code. The coding part - is the most fun part for every software developer.
Using all the requirements mocks and tests we can create as much possible error-safe
applications.

When we finish with the coding stage we need to test the result somehow. Yes, we
have unit testing but, unit tests do not behave as the real user. It can’t open the
browser and enter the real page. So for this task, we need to create the E2E testing
environment and tests. That is what we will learn in this chapter.

Only when we are sure that everything works correctly we can deliver our code into
the cloud environment and monitor the product(that is what we will do in the next
chapters).

The superpower of E2E testing in NextJS  169

Figure 7.1: Development flow chart with steps

Choosing an End-to-End testing
framework
There are several solutions on the market that can solve E2E testing problems.
The difference is in the possibilities of the platform, the size of documentation the
complexity of using and maintaining. As front-end developers, we do not need any
complex systems like Selenium or any competitors. But we need some simple tool
that will allow us to open the virtual browser and walk through the site step by step.
It would be great to use the same Javascript (or Typescript) for it to not learn new
languages only for test creation.

170  Next.js Cookbook

Setup Cypress for NextJS
Cypress is a powerful and easy-to-use framework with Chromium support. It has all
the required by the developer or QA tools for fast setup, code, and scale of the tests.

To add Cypress to the project, we need to enter the following commands at the root
of the project:

Figure 7.2: Commands to add Cypress to the project

Next, we need the command in the package.json file that will start our Cypress
tests. To do it add the command from Figure 7.3 to file:

Figure 7.3: Command that will start the Cypress tests

.

The superpower of E2E testing in NextJS  171

After the first run, you will see the debug window like in Figure 7.4:

Figure 7.4: First run of Cypress

Then you will see this window:

Figure 7.5: Start screen for Cypress

172  Next.js Cookbook

Let us review the difference of choice provided by Cypress:

E2E tests are required compiled version of the project and will follow the URL links
the same way as any real user will. That means that we will have pages that contain
all components in the browser. The tests will contain checks that the user will rightly
see on the page:

Component tests it is the same tests that we did before using Jest. These tests will
use isolated components and contain checks for the components only. That means if
we choose Cypress as a testing framework we could get rid of Jest and use Cypress
as the only testing framework

You can also see the different descriptions provided by Cypress in Figure 7.6:

Figure 7.6: Description provided by Cypress

Click on the left block from Figure 7.6 to configure the E2E tests using Cypress. After
clicking, you will see that Cypress added some files to the project like in Figure 7.7:

The superpower of E2E testing in NextJS  173

Figure 7.7: Configuration result for E2E using Cypress

In the next step you will see the screen where you will need to choose the browser to
test (you could also check the Electron version of the project):

Figure 7.8: Browser configuration in Cypress

After you click “Start	E2E	testing	in	Chrome” (It is chosen in Chrome but you
can choose any other preference), Chrome browser will open the new controlled
window with content provided in Figure 7.9:

174  Next.js Cookbook

Figure 7.9: Cypress testing interface

Now you can create an empty test by choosing a right block, or scaffold example
using a left block. We will choose the left one for example purposes. You will see the
content on your page that contains the list of example specifications that was added
to the project as depicted in Figure 7.10:

Figure 7.10: Example specifications provided by Cypress

The superpower of E2E testing in NextJS  175

In this list, you can click on each test that will be run immediately. Let us click on
todo.cy.js file for example.

Figure 7.11: E2E test result

After clicking you will see the process of the E2E testing. Cypress will follow the
instructions provided in section 1 in Figure 7.11. It will open the URL from section
2 . The browser that will be used for the test is in section 3 in Figure 7.11. Section
4 is the resolution of the screen that will be used for the test. This configuration is
controllable and can be configured before we start any test.

If you open the test instruction from section 1 in Figure 7.11 and hover over one of
the instructions you will also see the part of the page that is tested by this instruction
like in Figure 7.12:

Figure 7.12: Example of hover behavior

We can also check the state change of elements. For example, we have the checkbox
state change and need to figure out the difference before and after action. To get the
information we can click on the action in the list and then we can see the action box

176  Next.js Cookbook

that can show us the difference. You can click on the “before” and “after” buttons
to change the state. The result you can see in Figure 7.13:

Figure 7.13: The state change for the checkbox element

By default configuration, the IDE for the project will be VS Code if you will not
change this parameter. If you click on the “Before	 each” or “Test	 body” section
there will be a button to open the test code in the IDE like in Figure 7.14.

Figure 7.14: Open in IDE button for the test

Inside the file, you can see regular E2E test code like in Figure 7.15:

Figure 7.15: Example of E2E code from Cypress

The superpower of E2E testing in NextJS  177

Setup playwright for NextJS
The next framework is the outstanding result of the Microsoft team that can use any
browser in test flow, authorize once by test, test API, and many other features.

We have added the Playwright to our project in the previous chapters. But if you
missed this part please follow the steps above.

To connect Playwright you need first enter these commands from Figure 7.16 in the
console:

Figure 7.16: Commands to add playwright

You will also need this command in the package.json	file to run the playwright:

Figure 7.17: Command in the package.json file to run Playwright

After the installation Playwright will add an example specification file that we could
use to check the possibilities of the framework. Let us run the command to check the
result of it: (Figure 7.18)

Figure 7.18: Playwright command using the result

As you can see from Figure 7.18 we passed all provided in the example tests and also
see the command to see the report. Let us enter this command to see the report of the
tests. The result can be seen in Figure 7.19:

178  Next.js Cookbook

Figure 7.19: Report of Playwright tests

In this report (from Figure 7.19) you can get this information:
•	 What test instruction was loaded
•	 In what browser
•	 Time of operation
•	 The file name of the instruction
•	 Status of the test instruction

In the next step, we can click on instructions and check the report of exact instructions.
The result of it can observe in Figure 7.20:

The superpower of E2E testing in NextJS  179

Figure 7.20: Report for the selected instruction

Now (in Figure 7.21), we can see the full report that was done in the instruction line
by line with the status of execution.

Let us generate the error to see what will be if the test will fail. You can see it in Figure
7.21:

180  Next.js Cookbook

Figure 7.21: Failed test example in Playwright

We have made the test to call the wrong URL so the error report shows that timeout
was exceeded and the robot could not open the page. Next what we can see here - is
the line and what instruction was called to generate the error in this test. Also at the
top information line, you can see the number of failed tests.

Next what we need to know about Playwright - is the possibility to check the traces.
Traces is the same information that was in the browser at the moment of execution.
That means that we could see the console.log and network information at the
execution time. To get this information we need to call the Playwright test with a
special flag like this:

Figure 7.22: Run the test with the trace-on flag

After that, you will see an updated report in your browser. There will be a new
section with a trace file and trace view like in Figure 7.23:

The superpower of E2E testing in NextJS  181

Figure 7.23: Traces functionality in the Playwright Report

By clicking on the picture, we will be led to the traces page where we can see the
whole history second by second what was in the screen, console, network, and
metadata like in Figure 7.24:

Figure 7.24: Traces view for the test

We can follow the robot’s actions second by second and see what data was sent,
what consoles were on the browser, what steps were correct or not, and the like. This
trace view will give us full information about what was wrong with the page. Also,
in Figure 7.25 there is a link to download the archive. This archive contains all the
trace information that can be integrated into your internal monitoring system and
provides the trace view there.

182  Next.js Cookbook

Writing the first e2e test with Playwright
As you can guess, we will choose Playwright as a testing framework for our
application. Let us try to create the first test for our application using the example
specifications.

For more convenient use of Playwright in your IDE please install this extension from
Figure 7.25:

Figure 7.25: Extension for the VSCode to use Playwright tests in IDE

After that you will see the update in your test area in the IDE like this:

Figure 7.26: Updated test view in the VSCode

In my example, we have already added the first test into the test flow. To add it on
your side please create the file with the name cookbook.spec.ts in the e2e folder (do
not forget to remove or rename existing example files in this folder). Also, we will
require some configuration for the tests so please create the configuration file too.

The superpower of E2E testing in NextJS  183

The file structure example is in Figure 7.27:

Figure 7.27: Example file structure

In the newly created file please add this code from Figure 7.28:

Figure 7.28: First e2e test with Playwright

And in the configuration, there should be this code as in Figure 7.29:

Figure 7.29: Configuration for the e2e test

Now if you check the visual part of the test (or if you run the test) you will see that
it is red and failed. It is because the text in the h1 tag is not fit the expectations. We

184  Next.js Cookbook

need to fix it and add the text to the h1 tag. After that, you will see that all tests are
green.

Figure 7.30: Green tests for Playwright

Creating more tests for the application
As our application uses more than one page we need to create more tests. We need
to create these tests:

•	 Main page (already have it)
•	 Articles list page
•	 Article page
•	 Login page

Covering the authorization
We are using authorization in the application, so we will require to add authorization
into the flow. There are several ways to achieve it using Playwright. We will take the
most basic one and add the entering login page and authorization before each test.

To create the login flow add this code into the before each section:

Figure 7.31: Authorization flow in before-each section

The superpower of E2E testing in NextJS  185

After that each time when you start your test, the robot will open the login page and
do authorization and you can expect the elements on the page that be shown only
for authorized users. Add this code to your test to check if we have an add-article
button:

Figure 7.32: Test for the article page to check the button

We also need to update the configuration like in Figure 7.33:

Figure 7.33: Updated configuration file

186  Next.js Cookbook

Please find the updated test code in Figure 7.34:

Figure 7.34: Full code of updated E2E test

Covering internal pages
Let us add some more tests for internal pages to have better coverage. We will follow
this flow to create the tests for the articles:

•	 Articles list should show the data list
•	 In the article list if we click on the edit button modal window should be

displayed
•	 If we click add article button then also modal window should be displayed
•	 On the article, the page should be data that exist in the article

The superpower of E2E testing in NextJS  187

To cover these requirements please update the test file with the following code from
Figure 7.35:

Figure 7.35: Tests that will cover the requirements

Please note that we need to use `await` for each action because this directive creates
the wait-for-render mechanism that safely wait that element is rendered on the page.

We will also require to update the expectations array to have the mock data. Collect
the code in Figure 7.36:

188  Next.js Cookbook

Figure 7.36: Updated expectations array

As you see, we added the role identification to the button. This is needed to call this
button by identification. You can use anything that will be convenient for you (class,
role, data). In this book, the button is used as the checkbox for the modal window so
we could add role=checkox for it.

Now if you use the extension for the VSCode you will see that all tests are green.
That means that all tests are green as in Figure 7.37:

Figure 7.37: Result of Playwright tests

The superpower of E2E testing in NextJS  189

Conclusion
This summary effectively wraps up the chapter on end-to-end (E2E) testing,
highlighting the benefits of incorporating E2E tests into a developer’s daily workflow.
By using E2E tests, developers can reduce the number of cycles required before
moving to production, and E2E tests can also be integrated into CI/CD pipelines,
which is particularly valuable for larger teams and projects

The next chapter will lead us to the most important part of the development. We will
introduce the delivery stage and deployment to the production. To achieve it we will
check the best possible on-market tools that you can use for your next project. See
you in the next chapter.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
In modern software development, the creation and coding stage is only part of the
lifecycle of the development process. As you can remember from the last part it is
only a tiny piece of the process that is surrounded by a big number of steps. One
of the important parts is delivering software to the end user. On the web, it is the
deployment of applications into the cloud service, hosting, or any other servers. We
will cover the topic of cloud services in this chapter as it is the most modern way of
using the web today.

Structure
•	 Preparing the project to fly into production
 o Choosing the “perfect” render for the application.
 o Measuring performance and maintainability applications in NextJS.
 o Connecting Sentry for application monitoring.
•	 Using AWS Amplify to host our application
 o Understanding Amplify Admin area

Chapter 8
Deploying NextJS

project to production

192  Next.js Cookbook

 o Creating the data models for the application
 o Creating an authentication flow with AWS
•	 Adding data in the admin area
•	 Using cloud functions for application
•	 Reuse Cloud Functions with Layers functionality
•	 Finishing the backend with Amplify
•	 Host the application in the cloud and first run
•	 Conclusion

Objectives
In this chapter, we will speak about cloud hosting solutions and especially AWS
Amplify. This service from AWS is covering all possible quick-start requirements
of cloud hosting and service. Amplify is containing a visual backend service that
provides GraphQL as the result (this is why we covered this topic in previous
chapters), also there is a connection to any GIT service and build pipelines. The
service itself is partly free which will allow anyone to have a quick launch of your
idea in a very short time.

Preparing the project to fly into production
Before we start to deploy any code base into the cloud we need to speak about what
exactly we will send into web hosting. Regarding NextJS there are several ways to
the build result from the raw code into a complete ready-to-use application. For
development purposes, we start a live server that allows us to see the hot updates
immediately but in production, this is bad practice so we need to build the code into
the application before use.

Choosing the “perfect” render for the
application
Let us speak about the possible way to create the user-end application in NextJS.
Regarding the framework in our toolbelt, there are several build types provided:

•	 Client-Side rendering (CSR): In this case, the whole project will be the same
Single-Page application as any regular React application. In this way, you
will get the HTML page that will fetch the data dynamically so at the first

Deploying NextJS project to production  193

load the page itself will be super-light and loads as fast as possible. This is
a piece of good news. The bad news is that for SEO this way of rendering
is one big disadvantage. Robots will sync your data less effective and will
require more attention with search engines. The ranking of your pages will
be lower than the optimized ones that generated on the server. This way
of project build can be recommended for the internal systems, that do not
require any actions from the search engine robots and are used as a business
system. As an example, we can take CRM systems, dashboards, or internal
messaging.

•	 Incremental Static Regeneration (ISR): In this case, pages will be generated
on the fly without the whole project being built. This way of rendering is
very interesting as its fits the SEO requirements, and also does not need the
update of the project each time you add the page to the project. That means,
for example, you have a generatable page like [pid].page.tsx, and each time
you create the new PID for this page there is no need to rebuild the project,
and the old pages will be cached. It could look like the perfect build for the
project but there are also disadvantages. On the other hand - we will require
more server resources depending on the number of pages and users that
could start growing.

•	 Server Side Rendering (SSR): This way is pretty much the same as ISR but
the difference is that the page will be re-rendered on the server side for each
request. In this way, we will need even more resources compared to ISR.

•	 Static Site Generation (SSG): In this case, HTML will be generated in the
build stage. In this way, we can store and cache files in CDN for performance
increase. We can also choose between static site generation with fetched data
or without. The disadvantage of this way is that each time we add a page or
make changes in the content we need to rebuild the whole project. But an
advantage is the performance of the project in production.

To choose what build type is perfect for your next project please answer several
questions to help yourself:

•	 How many times per period you will add or update pages and content of the
site?

•	 What hosting provider do you have for the project?
•	 Do you need SEO?
•	 Do you need a cache for each page or only some of them?

194  Next.js Cookbook

The answers will help you to recognize what kind of project you have and how to
choose your perfect way of building and delivery.

Measuring performance and maintainability
applications in NextJS.
Before we speak about performance measuring of the application, we need to
implement some basic knowledge about ‘what is performance’ generally and how
to measure it on the web.

To solve this issue we will add here information about Web Vitals as it is the base
of the performance measuring in the web industry. Web Vitals is the initiative by
Google that provides the signals to help improve your web application. Metrics of
the Web Vitals are separated into three different types:

•	 Largest Contentful Paint (LCP): this type will measure application loading
performance. The average time of the application loading is about 2.5 seconds
after the page first start. This number is provided by the Web Vitals rules.

•	 First Input Delay (FID): this type will measure interactivity. The delay
should be no more than 100 milliseconds to fit the good user experience rule.

•	 Cumulative Layout Shift(CLS): this type will measure visual stability in
scores. The score itself is measuring the difference between the page before
action and after (for example asynchronously loaded content after the page
is loaded). The good score should be 0.1 or less.

•	 Time to First Byte (TTFB): this type shows the time between the browser
requesting a page when the first byte was received from the server. That
means that we take the time between the request start and response start in
milliseconds.

•	 First Contentful Paint (FCP): this type measures the time from when the
page starts loading to when any element of the page is rendered on the
screen. The average time for a good load is about 1.8 sec.

•	 Interaction to next Paint (INP): this metric is assets responsiveness and
causes when the page becomes unresponsive. This metric is experimental so
do not expect strict metrics values.

Deploying NextJS project to production  195

In Figure 8.1 we can observe visually how the types work:

Figure 8.1: Web Vitals visually

Directly, we can implement this measure in our application using internal tools that
exist in NextJS. Add this code in _app.page.tsx to see the performance data in your
browser console as shown in Figure 8.2:

Figure 8.2: Function to get

196  Next.js Cookbook

After the page reloads, we will see the data in the browser console like in Figure 8.3:

Figure 8.3: Metrics in the browser console after code update

As you can see, we can filter the metric data by the label, to get only web-vital
information or by the name to separate each metric.

Also, there is a NextJS-specific metrics that exist in the report on the page load or
route change. These metrics will have a custom label and can be separated by the
name:

•	 Next.js-hydration: The time of hydration in milliseconds
•	 Next.js-route-change-to-render: The time that takes to start rendering the

page after router change

Deploying NextJS project to production  197

•	 Next.js-render: The time that takes to finish rendering the page after a route
change

In Figure 8.4 we can see the example of a report in the browser console after the route
change:

Figure 8.4: Custom NextJS metrics

Getting metrics is only half of the maintainability process. We need to send this data
somewhere. As you can see the data itself is just an object so we can use any API to
collect the data. To send it into the API we can use the code example from Figure 8.5:

Figure 8.5: Send metrics example code

For modern browsers, there is a sendBeacon function that asynchronously sends
HTTP Post requests containing a small amount of data to some web server. If there is
no such function we will use regular fetch (that is not recommended). As a receiving
data API, we can use any service that provides this possibility (for example: Elastic
Kibana, Zabbix, or Dynatrace). In the example from Figure 8.6 we will use the Google
Tag manager to store the browser metrics:

198  Next.js Cookbook

Figure 8.6: Example of using Google Tag to store the metrics

Connecting Sentry for application monitoring
Before we start implementation let us speak about the service itself and why we
choose it as the performance monitoring tool. The main motivation is that the service
was created as a tool to catch JavaScript errors in the project. Today this feature
is only a small part of the big ecosystem. That means we could wrap our project
not only with the solution that will help us monitor the project’s performance data
but also any errors that could happen while using the app. And the main reason,
that Sentry is the ready-to-use ecosystem with dashboards and notifications. These
possibilities are not in the built-in scope for NextJS so we will proceed with Sentry.

First, open the Sentry in the browser using this link `https://sentry.io/`. In Figure 8.7
you can see the main page:

Figure 8.7: Sentry main page

Then you need to click the `Get started` button to proceed. In the registration form
please fill all required data or choose Sign-in with social media(I will choose sign-in
with Google):

Deploying NextJS project to production  199

Figure 8.8: Registration form for the Sentry

Now you can create a new project for the implementation by clicking on the `Create
project` button.

Figure 8.9: Creating a new project in Sentry

200  Next.js Cookbook

In the screen from Figure 8.9, we need to the setup project. As you can see we
can choose NextJS as a platform. We will keep an alert frequency for every issue
by default. The name and team of the project will be CookBook as well. When
everything is filled we can press the `Create project` button.

In the next step, we will get instructions on how to implement Sentry in our project.
Please use these commands from Figure 8.10 to install Sentry in our project:

Figure 8.10: Commands to install Sentry in the project

After that, we can configure the Sentry. Use this command to achieve it:

Figure 8.11: Command to configure Sentry in the project

As we are using TypeScript in the project so we need to do some manual changes
to activate sentry in the project. Sentry setup will create several files automatically.
We need to change the names of these files. Check Figure 8.12 to see the file structure
that will be changed:

Figure 8.12: Files structure to be changed

Deploying NextJS project to production  201

As you see we will rename _error.js	and sentry_sample_error.js files to _error.
page.tsx and sentry_sample_error.page.tsx. We will need to make changes in the
next.config file. Please use Figure 8.13 to make updates:

Figure 8.13: NextJS configuration update

Finally, we need to check if everything works correctly. To do that let us add a button
that will trigger the error on click. This error will be sent into Sentry automatically.
Update your index page as provided in Figure 8.14:

Figure 8.14: Home page update to send error into Sentry

202  Next.js Cookbook

When everything is configured you can restart the server and try to click the button.
When you trigger the error in the Sentry console you will see a new issue generated
in the list like in Figure 8.15:

Figure 8.15: Sentry console with a new issue in the list

Using AWS Amplify to host our
application
Before we start exploring the AWS Amplify service we will check if there is an in-
house solution to host the project using Vercel possibilities. There is a reason why

Deploying NextJS project to production  203

we introduce AWS in this book against the Vercel delivery system and let’s do some
comparison. As there is a big list of the same possibilities and differences we will
take only key elements that will be mainly in the choice between services. The
comparison is presented in Table 8.1:

Feature Vercel AWS Amplify

Development UI and Admin UI x Amplify Studio

Infrastructure Multi-Cloud AWS

Database x DynamoDB

Authorization service x Amplify Auth
Table 8.1: Comparison table for Vercel and AWS services

As you can see AWS Amplify covers more features that could be critical for full-stack
development, that’s why we will choose and proceed with it for the delivery our
application.

Understanding Amplify admin area
To get into the admin area we will need to create the AWS account first. Use `https://
aws.amazon.com/amplify/` this link to get into the AWS amplify page. Then click
the `Create	an	AWS	Account` button to create the account.

Figure 8.16: AWS Amplify main page

Please follow the form requirements that you will see after clicking. The form is the
same as in Figure 8.17:

204  Next.js Cookbook

Figure 8.17: Registration form for the AWS

Choose the` Sign	in` button if you already have an AWS account. Choose the `Get
started` button from Figure 8.18 to create the new project:

Figure 8.18: The first screen of the AWS Amplify

Choose `Build	App` and you will be led to the page with application name selection.
Provide the name in the form and click confirm.

Deploying NextJS project to production  205

Figure 8.19: Form to choose the project name

After all preparation is over you will see all green stages passed as in Figure 8.20:

Figure 8.20: AWS Amplify status check

206  Next.js Cookbook

Before we connect the repository we need to figure out how to use the admin area
in the amplify. Use the `Backend	environment` tab and click on the `Launch Studio`
button like in Figure 8.21:

Figure 8.21: Backend environment tab

In the admin area you will see the screen provided in Figure 8.22. Let us do some
research on what possibilities it has:

Figure 8.22: AWS Amplify admin area

In the left panel we will introduce the elements that will be required to cover the
topic of this chapter. There are way more opportunities provided by AWS Amplify,
but we can’t cover all of them in the scope of this book. But you can explore the
possibilities yourself:

•	 Content: this element will be required to create content for your application.
This will led us to the Data element because we need the data structure to

Deploying NextJS project to production  207

store the content. All data use the same rules as any database (relations,
tables.)

•	 Authentication: this element will add a possibility to authenticate users in
several ways, and the users are connected to the User management element.

•	 UI Library: this element is required to create forms on the page to manage
data in the database

Creating the data models for the application
After clicking on the Data element in the right panel we will be led to the data UI
part where we can visually create the schemas. The schemas after creation will be
automatically converted to GraphQL schema. Click on the `Add model` button to
create a new model:

Figure 8.23: Add model button to create a new model

In the form that will be opened after that we need to add a name and set up the data
fields that will exist in this model like in Figure 8.24:

Figure 8.24: Data model example

Click the `Save	and	Deploy` button to create the data model in your project.

208  Next.js Cookbook

Creating an authentication flow with AWS
Next what we need is to set up the authentication. We will use simple authentication
with email and password, but we can connect social medial login as well. In the
Authentication menu element, we will not change anything. Just click the `Deploy`
button and wait until the end of the process:

Figure 8.25: Authentication setup in AWS Amplify

After that we can manage users in the user’s area as in Figure 8.26:

Figure 8.26: User management area in AWS Amplify after authentication deploy

Deploying NextJS project to production  209

Adding data in the admin area
In the Content area we can create new data by selecting the table in the list. For the
test, we can also auto-generate content by pressing the `Auto-generate	seed	data`
button. We will generate 10 rows for the Articles table. In Figure 8.27, you can see the
result of the generation process:

Figure 8.27: Result of generating rows for the Articles table

Using cloud functions for application
To start using the AWS Functions in your project that are wrapped with Amplify we
need to install Amplify CLI to your computer first. Use the command from Figure
8.28 to install Amplify:

Figure 8.28: Command to install Amplify CLI to your computer

Next, we need to configure the Amplify project to be connected to our local project
with the command from Figure 8.29:

210  Next.js Cookbook

Figure 8.29: Command to configure Amplify

The name of your AWS zone can be collected from the interface like shown in Figure
8.30:

Figure 8.30: Zone name that will be required in the configuration

We use Europe(Frankfurt) means the zone name will be eu-central-1. After that, you
will be led into the user check process. Follow the guide and in the form press the
`Next ̀ button and do not change anything. In the end, you will be on the page where
the access key can be collected like in Figure 8.31:

Deploying NextJS project to production  211

Figure 8.31: Page with access id

Grab this ID and provide it in your console wizard as shown in Figure 8.32:

Figure 8.32: Access Key provided in the CLI wizard

Please also provide the secret key from Figure 8.31 as a reply for the next question
in CLI.

Next, we will initialize the amplify application with the command provided in
Figure 8.33, please enter this command in the application root, that will be helpful in
the future:

Figure 8.33: Init the Amplify project

212  Next.js Cookbook

In the CLI wizard you will need to enter the same information that was required
previously as region, access and secret keys. You will see the success message from
Figure 8.34 when the process will be finished:

Figure 8.34: Successful init of Amplify

Now, we need to pull the Amplify configuration into our project. To do that grab the
command in your Amplify UI from the button, that is shown in Figure 8.35:

Figure 8.35: Command to pull the project configuration

For the question about source code please use the `pages` folder as the source for the
NextJS app in this folder. After the configuration is finished you will see that project
now have 2 more folders on the pages and one more folder in the root. In the source,
we can find Amplify GraphQL models and the UI components to manage the data.
It is the scaffolded forms that will help us to create and update data:

Figure 8.36: New folders in the pages folder

Deploying NextJS project to production  213

As the simple example of Lambda creating (the more complex is out of scope for this
book, but you can learn it yourself in any AWS resource) we will create a trigger, that
will update table on each data update in Articles. To do that we need to create the
function by typing the command from Figure 8.37:

Figure 8.37: Command to make the function

Make selections from Figure 8.38 to complete function creation:

Figure 8.38: Selections to complete the function creation

After that, in your AWS console you can choose lambda and your function will
appear in the list like in Figure 8.39:

Figure 8.39: Lambda functions list

214  Next.js Cookbook

Click on the name and you will get inside of this function like in Figure 8.40:

Figure 8.40: Lambda function screen

As you can see the trigger is already attached to the Lambda. To make changes in the
other table we need to create one. Please follow the previous instructions and create
a new table in the Amplify console to have it like in Figure 8.41:

Figure 8.41: New table to store the data

In this table we will create one row that we will change on each article update. After
that, we will create an element using the DynamoDB tab as we need to get the ID of
the element that is not shown in Amplify panel. Choose DynamoDB in your AWS
console and follow the DynamoDB link to get to the page from Figure 8.42:

Deploying NextJS project to production  215

Figure 8.42: Action counter table in AWS console

Crate an element with any number inside. In this tab from Figure 8.42, we will need
an element id and the table id that we will use in our Lambda function. Go back
to the Lambda function panel. Here we will need to add the permission to connect
to DynamoDB directly from the function. Please note that we are doing this only for
example purposes, please use an API way to get the data from the Database.

In the Configuration|Permission tab of the Lambda function panel please click on
the name of the permission to change it shown in Figure 8.43:

Figure 8.43: Configuration|Permission tab of the function

Click add permission and policies as shown in Figure 8.44 and find the DynamoDB
full access policy to add the permissions:

216  Next.js Cookbook

Figure 8.44: Adding the database permissions to the function

In the Lambda function panel please choose the Code tab as shown on Figure 8.45, in
the code field we will place the function code:

Figure 8.45: The code tab for the lambda

Deploying NextJS project to production  217

Use the code from Figure 8.46 to your Lambda function in the code field:

Figure 8.46: The function code

Now you need to press on the Deploy button to deploy the function to the cloud as
shown in Figure 8.47:

Figure 8.47: Deploy function to the cloud

218  Next.js Cookbook

After successfully deploying you can test the function by pressing on the Test button.
To see the result open the DynamoDB console(or Amplify content) and check that
number is changed. Now each time we do changes in the Article table this function
will trigger changes in the other table.

Reuse cloud functions with layer
functionality
For some Lambda functions we probably could require third-party npm packages to
work with services or with data or, for example with dates. For the current example,
we will take the MomentJS library and create a Layer with it to reuse it in any
Lambda function.

The layer is a dependency container that can be reused in any Lambda function.
That means that we do not need to implement dependency and install it in any
function but do it once and then reuse it. We also have a limitation so in AWS we can
create not more than 5 layers that can be reused.

To create the layer please create the nodejs folder in any place on your hard drive
(I will put it into C:\temp\nodejs). In this folder please init the empty npm project
as usual and then add the moment js package with the command from Figure 8.48:

Figure 8.48: Command to install momentJS

Your layer project should look like provided in Figure 8.49:

Figure 8.49: A file structure for the Layer

Zip the nodejs folder and open the AWS Lambda console. Click on the Layers menu
element to open the Layers UI admin interface like in Figure 8.50:

Deploying NextJS project to production  219

Figure 8.50: Layers menu

As you can see from Figure 8.50 there is a `Create	Layer` button. Press it to create
your new layer. Fill the form as provided in Figure 8.51 to create your first Layer:

Figure 8.51: Create layer form

220  Next.js Cookbook

Now enter the lambda function that we created before and scroll to the Layers list
selection as in Figure 8.52:

Figure 8.52: Add layer group

Click the `Add layer` button from Figure 8.52 then choose Custom layers and find
your first layer in the list like in Figure 8.53:

Figure 8.53: Adding the layer to lambda function

Press the `Add` button and switch to the `Code` tab. We will need to make some
changes there.

Deploying NextJS project to production  221

The code changes can be observed in Figure 8.54:

Figure 8.54: Code updates for the Lambda function

As you can see we import the function from the package that is not related to
the current function. But we can do it because of the Layer functionality and the
MomentJS is connected to it.

Finishing the backend with amplify
Let us summarize what we have now in the AWS Amplify:

•	 We have an articles list that we can show in our application
•	 We have a login system that can be implemented in the app

So to make a conclusion we need to implement this functionality in our application

To do it we need to add Amplify to our pages. The documentation for the NextJS
is not so clear at the moment of the book creation so probably something will be
corrected. If not then please follow this guide to easily implement Amplify into the
frontend part.

First, we need to install dependencies into the project that will help us to create a
connection. Use Figure 8.55 to install the dependencies:

222  Next.js Cookbook

Figure 8.55: Dependencies for Amplify

After that we need to push everything we have into the Amplify to create the
configuration file. Use `amplify push` to push changes to the cloud. Please sure
that file `aws-exports.js` appeared in the pages folder. Now, we can connect to the
Amplify.

Open the _app.page.tsx file and put code from Figure 8.56 before component:

Figure 8.56: Code to implement Amplify

Now we can call Datastore to retrieve data:

Figure 8.57: Code to retrieve Articles data

Deploying NextJS project to production  223

Use Figure 8.57 to get the data from datastore. Change the data in component to the
result of the query:

Figure 8.58: Updated articles list component

224  Next.js Cookbook

Now your list will look like in Figure 8.59 with data from Amplify Content UI:

Figure 8.59: Data list from Amplify datastore

Next we need to update the article page as shown in Figure 8.60:

Figure 8.60: Article element change after update

Deploying NextJS project to production  225

Now we can see the current article as you can observe in Figure 8.61:

Figure 8.61: Current article from datastore

Now we can update the login. To do that let us add the dependency using the
command from Figure 8.62:

Figure 8.62: Commands to add auth dependency to the project

As you remember we made our login system with a strategies pattern and to add the
new kind of authorization we simply need to add a new strategy and use it. Please
add the Strategy to the configuration file first, the name of the file is `/pages/api/
core/configuration.ts`. Grab the code from Figure 8.63 for the update:

Figure 8.63: Configuration update

226  Next.js Cookbook

Now, in the strategies file (./login-strategy.ts) we need to add a strategy class
like in Figure 8.64:

Figure 8.64: Login with Amplify strategy

And that is it!! Now after login using the credentials of the user from the Amplify
User panel we will be directed to the page where we can see elements only for
authorized users:

Figure 8.65: Articles after authorization

Deploying NextJS project to production  227

Host the application in the cloud and the
first run
We are ready to launch our application in the cloud. To do that please put your
project into any GIT services that you like (Github, Gitlab, BitBuket, and the like).
We will need to connect our Amplify project with it. To connect the application with
GIT please follow Figure 8.66:

Figure 8.66: The main page of Amplify app

Choose the GIT provider where your project code is located.

Figure 8.67: Finishing repository connection

228  Next.js Cookbook

After you finish the choosing repository just click `Save	 and	 deploy` from Figure
8.67. From the first Attempt, your build probably will fail. It is because of the non-
documented issue with Amplify and Sentry. We need to add some environment
variables to make it work in the Amplify environment. Refer to the Figure 8.68 to
solve this issue:

Figure 8.68: Amplify environment variables

You can collect your auth token from Sentry using this link:`https://sentry.io/
settings/account/api/auth-tokens/`

In Figure 8.69 you can see the example of success deploy (all steps should become
green). And also the link to the frontend can be collected on the left side from Figure
8.69:

Figure 8.69: Success deploy and link to frontend

Click this link and you will be led to the hosted project in the staging environment
like in Figure 8.70:

Deploying NextJS project to production  229

Figure 8.70: Frontend, hosted to the Amplify

Conclusion
In this chapter we made one of the most complicated and important parts - delivery
your application to the end user. In the real life, you can choose any cloud solution
that exists on the market. Any of them will have the same way of working and
delivery, so if you know how to deliver to AWS, you can be sure that there will be
not a big deal to switch to any other solution. Please note that Amplify today is the
only all-in-one solution but you might not need the serverless solutions and backend
from AWS.

In the next chapter, we will make a final touch and make our software perfect in case
of optimization and SEO.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
It is always difficult to make the perfect even better. But we will try to improve NextJS
across various parameters such as performance and optimization. Additionally, since
we leverage the full power of server-side rendering, we can enhance our application
for SEO purposes.

Structure
•	 How to get more performance from superfast NextJS
 o Using dynamic load for the client side to reduce the first load
 o How to optimize images with components
•	 How to bake server-side components
•	 Creating SEO-friendly optimization
•	 Conclusion

Chapter 9
Mastering

optimization tools
for NextJS

232  Next.js Cookbook

Objectives
This is the final chapter of the book and here we will try to introduce everything
that will help you to make your project a little bit better. All the tools that we will
introduce not have a special group so I decided to put them in the very last chapter.
The reasons are:

•	 It is a helper but not one of the main parts of development
•	 There is no special group of purpose for them
•	 One can be sure that you are tired of so much information at the end of the

book and these topics make you have fun with NextJS

How to get more performance from
superfast NextJS
NextJS is a very fast framework and the reason for the performance is a not-usual
list of build possibilities. We can configure the project to the strict requirements and
get the exact results of performance that we need and expect. But what if there is
a way to make it work faster? Not extremely faster but have a 10 or 15 percent of
performance increase. There is a way to help you in some cases and let us look at
them.

Using dynamic load for the client side to reduce
the first load
NextJS perfectly implements one of the exciting features of modern JavaScript that
allow us to defer the loading of the modules separately. This practice can divide
bundles into smaller chunks that can eventually improve site performance.

Let us check what can be a drawback of performance in common projects:
•	 Web apps that require user interaction load a whole bunch of components

even if they are not required at the current moment.
•	 A huge codebase creates a quite big bundle size and the compilation process

is really slow because of the big number of components.

Using dynamic components led to the process called code splitting that in the
end land us to reduce the main bundle size and split it into several files that load
asynchronously.

Mastering optimization tools for NextJS  233

For example, in our project, the top navigation bar will be loaded statically as you
can see in Figure 9.1:

Figure 9.1: Example of the static load of the NavigationBar component

In this case, the page will render all components before showing them on the page.
To make the navigation component dynamic use the code from Figure 9.2 to improve
the component:

Figure 9.2: Dynamic navigation component

234  Next.js Cookbook

As you can see in Figure 9.2 the component is not loaded with the component but
the asynchronous load on the component init. That simple optimization will lead to
a various number of improvements. Be sure that in the small projects with not a bit
number of components on the page you probably will not see any improvements
visually, but for the bigger ones, this simple change will be a great advantage. This
will solve the following:

•	 Conversion rate improvement. Your site will load faster and more data at
one time.

•	 We will decrease the bounce rate which will simultaneously lead to better
performance.

•	 We will improve the time to interaction time that will also improve the site.
Next.js optimizations can reduce the time it takes for users to start interacting
with your web application. A faster TTI leads to a better user experience, as
users can quickly access the content and features they need.

All these improvements are not only about performance. It is also about the ranking
of the site in the search engine for the robots these metrics matter and we should
always keep in mind that the web application’s purpose is not only for internal use
and dashboards.

Let us play around with this feature to see how else we can use it. We can create the
wrapper that will trigger lazy loaded in the component loaded event. That means
that we will expect the promise of the component loading and then send it to the
container like in Figure 9.3:

Figure 9.3: Lazy loaded wrapper for the component

Mastering optimization tools for NextJS  235

For this case, we can also create the whole logic that will load the required component
by name depending on the route, as an example. In Figure 9.4 you can collect the
code for this example:

Figure 9.4: Dynamically change components by the route

In the browser, in case you in the articles page you will see the same as in Figure 9.5:

Figure 9.5: Result of dynamically loaded logic

The number of dynamically loaded components doesn`t matter. We can load as
many components as we need.

236  Next.js Cookbook

The next thing is that we can manually configure the dynamically loaded component
to be client rendered and pass the SSR configuration. In Figure 9.6 you can observe
the example code of how to do that:

Figure 9.6: Configuration for the dynamic component to be client-side rendered

Now the navigator component will be rendered way faster than before as it is not
a part of server-side rendering. This can be used for the components that are not
required to be a part of the content for the SEO (shopping cart or user details for
example).

The last thing that we will check in this topic is the possibility of dynamically loading
third-party libraries. For example, I will take the Axios library and call a fake API
with it to get the result. The example code is located in Figure 9.7:

Figure 9.7: Dynamically load third-party library

Mastering optimization tools for NextJS  237

As you can see we are loading the Axios library only in the place where it is required
to be. Be sure that this example is only the academic way of use, for the real-world
application it will be strange to use it like this, but we will do it only to show you
that it is a possible way of using dynamic load. Figure 9.8 is the result of clicking on
the button:

Figure 9.8: Result of clicking on the button where the library loaded by clicking on it

How to optimize images with components
The basic problems that can be met with images for your site can be grouped in the
list like this:

•	 The format of the image is chosen incorrectly. In some cases, PNG is way
bigger than the same image in JPEG format. On the modern web, it is better
to use the WebP format as it is the most optimized format for the web. You
can find numerous converters on the internet that could help you to translate
images to WebP.

•	 The wrong size of the images led to an increased loading time for the page.
For example, we do not need 4k images for mobile users with a maximum of
1440p screens. We can detect the device and provide the required one. There
are a lot of services that will help you to resize your image to have it for each
required screen size.

•	 The wrong compression of images could be also an issue, so before translating
the image to the WebP and creating the bundle for several resolutions use
any compression service on your image to reduce size. A lot of images are
having information that is not visible to the average human eye, so it is just
there and can be easily removed with compression.

In NextJS there is a special component, that can solve a lot of problems, so we highly
recommend using it.

Let us try to use it, but first, we will get the image in WebP format. After that, we
place the file in the public folder. Use code from Figure 9.9 to insert the image:

238  Next.js Cookbook

Figure 9.9: Insertion of the image using the Image component

This component automatically will create several parameters like width, height, and
dataBlurUrl. This is very important for the CLS metric from the previous chapter. If
you use remotely located images (for example: from S3 or any other file store) please
always put width and height for the component to avoid CLS degradation. Let us
look at the possible properties of the component that can be useful:

•	 src: here you can provide a statically imported file or string with a URL to
the remote storage.

•	 layout: string property to configure responsibility for the image. Please
observe possible values for this property.

•	 intrinsic: it is the default value that renders enough space to use the original
size of the image.

•	 fixed: fills the parent’s size. Please make sure that the parent element is
having `position: relative` property.

Mastering optimization tools for NextJS  239

•	 responsive: reacts to parent element width. Make sure your parent container
is having `display: block property.

•	 loader: this parameter generates a loader element before the image is loaded,
but as a parameter, it can take configuration variables from the NextJS. Check
the example code in Figure 9.10.

•	 placeholder: this parameter will generate a way of loading the image
visually. This parameter has 2 options:

 o empty: nothing will be visually shown
 o blur: the image will be blurred until the load is over. You can use

blurDataUrl param to show any other image you want
•	 priority: this parameter will disable lazy loading and put these images in

the loading queue higher than others.
•	 quality: this parameter is to manage image quality. The range of it is between

1 and 100. Changing this parameter also affects the image file size, so you can
reduce the quality for the images where you need it to be small but not in
high-resolution.

•	 sizes: this parameter’s purpose is to set sizes like minimal or maximal width.
This parameter replicates a standard sizes param that is used in HTML IMG
tag.

•	 loading: this param is configuring a loading type for the image.
 o lazy: default type that loads the image asynchronous
 o eager: if this is selected then the image will be loaded synchronously and

hurt performance
 o objectFit: this property replicates the CSS object-fit behavior so you can

select fill cover or contain the same as you would do that with CSS.
 o objectPosition: also replicates the CSS object-position property.
•	 onLoadingComplete: this is the callback function property. That means that

after the image is loaded we can call some function (for example if more than
10 images are loaded then we can take more data from API)

As you can see using the `Image` component from NextJS is more performant and
configurable. Also, you will need fewer components to work and manage images as
most functionality is already inside.

240  Next.js Cookbook

Figure 9.10: Image loader example code

How to bake server-side components
This is an experimental feature, so it is required React 18 which will come with Next
13. At the moment of this book creation, the 12th version of NextJS is stable so I
would highly recommend using this one for a while. But let us look into the future
and check what is covered under the newest React and NextJS.

Before we start we need to turn on the feature in the NextJS config using the
configuration object from Figure 9.11:

Figure 9.11: Configuration for the NextJS

Mastering optimization tools for NextJS  241

Just add this in the configuration in the next.config.js file. We will also need the
latest version of NextJS so please remove the current version and add ^13.0.3. Next
what you will need to do is to rename the pages folder to the app and make huge
reconfigurations of the folders.

If you do not want to break the current project you can also use the example from
Vercel that is located at this link `https://github.com/vercel/next-react-server-
components`. It is much better than renaming everything in the current project. This
is what I will do in the next steps to not to break the current project as it has way
much setup that could be broken during reconfiguration.

So the server-side rendered components are the components that are literally stored
and rendered on the server.

What this feature can give us in the future:
•	 Direct access to the database that makes fetching faster (can be used for non-

critical components that can have direct access to DB).
•	 The Server side components are not included in the bundle so you cannot

load them on the page during the load stage. That also means that we could
not use any client-side interactivity and hooks like useState or useEffect.

To create the server-side component we need to create a new folder in the file
structure that is called the server and put the page component there as in Figure 9.12:

Figure 9.12: New file structure for the server-side component

Grab the code from Figure 9.13 as the component code:

Figure 9.13: Server-side component code

242  Next.js Cookbook

The magic trick is that when you will enter the `/server` link in the console you will
not see any text from the component code. This log will be only on the server side.

Figure 9.14: Log of server console that will not appear on the client side

Next what we can do is mix server-rendered components with client components.
To do that please create the mix folder and put the page file inside (if you use Vercel
example then put page.js there). Refer to the Figure 9.15 for the code:

Figure 9.15: Code for the mixed component

As you can see we will need two more components. The first step - will be the client
component and the second one is the server.

For the client please create the client.js file and use Figure 9.16 and copy the code
from it:

Mastering optimization tools for NextJS  243

Figure 9.16: The client component code

For the server - please create a server.js file in the mix folder and use code from
Figure 9.17:

Figure 9.17: A server component

As you see in the Client component we used the `use client;` property to indicate
the compiler to use this component as client-rendered. After entering `/mix` page
you will see the result from Figure 9.18 with mixed components:

244  Next.js Cookbook

Figure 9.18: Mixed components

Please note that if you try to put a server component into the client component - the
server component will automatically degenerate into the client component. So be
careful with it and find the correct places for your components.

Interesting fact, using the server-rendered components led to the thinking that
NextJS is trying to reproduce the same way of using web apps as we did it 10 years
ago, by using server pages technologies like Java or PHP. Will see how far it will
come.

Creating SEO-friendly optimization
To make here some recommendations let us describe what is SEO and why is it
important. SEO is Search Engine Optimisation. Basically, everything in this chapter
(except experimental features) stands to improve the site optimization that will
directly affect SEO.

As SEO is a very huge topic that deserves a separate book, we will be going through
only the several parts that will help you to improve your site.

First what we will improve is a head part of the page that will contain the title and
description for the page. First, we need to create this part to use. Please observe
Figure 9.19 to collect the code with changes:

Figure 9.19: Updates for the Layout component with head

Mastering optimization tools for NextJS  245

After that you will see that title and description exist on each page. The next step
is to add an Open graph element to the header. Open graph elements are special
elements that will help your page to become a rich object in the social graph. This
functionality will help your page to be shown correctly in Google (to have the correct
title, image, and description), and also if someone will share your page it will be
shown correctly with the correct data and image.

•	 og:title: The title of your object which should appear within the graph, for
example “The Rock”.

•	 og:type: The type of your object, for example “video.movie”. Depending on
the type you specify, other properties which may also be required.

•	 og:image: An image URL that should represent your object within the graph.
•	 og:	URL: The canonical URL of your object that will be used as its permanent

ID in the graph, for example, “https://example.com/somepage-123/”.

Refer to the Figure 9.20 to update your header with the following code:

Figure 9.20: Open graph tags for the head element

The problem now is that we will have the same information for each page. To solve
it we need to make these tags generate dynamically.

Update the component with code from Figure 9.21 to solve it:

246  Next.js Cookbook

Figure 9.21: Updated component to generate meta dynamically

Mastering optimization tools for NextJS  247

Now if you check the page you will see that data is generated by the request as in
Figure 9.22:

Figure 9.22: Generated metadata in head tag

Conclusion
In this chapter, we managed to make last preparations and fixes that allow your
project on NextJS to be one of the most performant and SEO friendly. We covered a
lot of topics that could require more deep investigation.. There is no way to perfect
software without everyday improvements, do not hesitate to do that!.

As it is the last chapter of the book I want to say thank you if you read this book from
start to end. I hope everything that you met in this book will inspire you to create the
most interesting and perfect software using the NextJS framework.

Thank you one more time, and see you in the other books!

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

A
Access token 62
Amplify app

hosting, in cloud 227, 228
API endpoints

creating, for application 149, 150
Apollo client

setting up, for NextJS 104, 105
Apollo Server

API, reusing 103, 104
connecting system, writing 100-102
model, creating for NextJS application 99
using, for NextJS 99

application
authorization, using 184-186
preparing, for production release 168

authorization
tests, adding 184-186

authorization form
code logic, creating 62, 63
component, mocking with pencil 56-59
components, splitting into generic

components 59-61
creating 56
global styles, separating from

local styles 61, 62
tests, writing for 63, 64

AWS Amplify
admin area 203-207
authentication flow, creating with 208
backend, finishing with 221-226
data, adding to admin area 209
data models, creating for application 207
for hosting application 202, 203

AWS Functions
reusing, with layer functionality 218-221
using, for applications 209-218

B
Builder pattern

baking, for API 93-98
writing, for operating data 28-38

C
Client-Side rendering (CSR) 192
Component styles 62
CRUD system, for articles

creating 156
data, updating in API 161, 162
public and private areas, separating

with NextJS 156-158
Redux store, for data state and edit 158-160

Cumulative Layout Shift(CLS) 194
Cypress 170

Index

250  Next.js Cookbook

adding, to project 170-176

D
data API

connecting, to state management 120, 121
design patterns

builder pattern, for operating data 28-38
Singleton pattern, for data objects 22-27
Strategy pattern, for page

changing intent 38-42
using 22

Design tokens 62

E
E2E test

writing, with Playwright 182-184
End-to-End testing framework

Cypress, setting up for NextJS 170-176
Playwright, setting up for NextJS 177-181
selecting 169

F
First Contentful Paint (FCP) 194
First Input Delay (FID) 194

G
Global styles 62
GraphQL way authorization

advantages 78, 79

I
Incremental Static Regeneration (ISR) 193
Interaction to next Paint (INP) 194
internal application pages

article item page, creating 153-156
article list page, creating 150-153
creating 150

internal pages
tests, adding 186-188

L
Largest Contentful Paint (LCP) 194

M
multilingual tool, for application

creating 162-165
multipage app

creating 12, 13

N
NextJS

for older npm versions 3-6
installing, with latest version of NodeJS 2
installing, with npm 2, 3
project, for local development 6
running 2
SCSS, using 10
setting up 2
TypeScript, using 9

NextJS, as API server
authorization token, generating

for user 87, 88
NextJS API routing structure,

creating 83, 84
NextJS REST API, creating 85-87
using 83

NextJS project deployment
into production 192
maintainability 197
performance measuring 194-196
render, selecting 192, 193
Sentry, connecting for application

monitoring 198-202

P
page params state

changing, without data fetching
methods 18, 19

pages
changing 14-18

Index  251

performance optimization 232
dynamic load, using for

client side 232-237
images, optimizing with

components 237-239
server-side components, baking 240-244

Playwright 177
adding, to project 177-181
E2E tests, writing with 182-184

publishing system
application structure, creating 130-133
article button, adding 134
article description component 137
article edit component 147
article list item component 144, 145
article text component 138
article title component 136
atoms, creating 133, 134
back-to-list button styles 140
close button component 139
creating, for food blog 124, 125
dates component 135
dates component styles 136
delete article button 140
edit article button 141
internal pages, splitting into

components 128-130
mocks for article description page,

creating 125
mocks for internal page,

creating 125-128
modal component 146
navigation bar component 143, 144
navigation link 142, 143
separator component 142
styles, adding for component 135
styles, for delete article button 141
textarea styles 138

R
Redux

setting up, in NextJS 108

Redux store
objects, creating 114-117
tests, writing for 109-113
using, for authorization

in application 117-120
Refresh token 62
REST way authorization

advantages 78
router

optimizing, with design patterns 22
routing tools 14

S
SCSS

using, in NextJS 10
SEO-friendly optimization

creating 244-247
Server Side Rendering (SSR) 193
Shallow Routing 18
Singleton pattern

baking, for API 88, 89
using 88
writing, for data objects 22-27

SPA
optimizing, with design patterns 22

state-management tools
using, in applications 108

Static Site Generation (SSG) 193
Strategy pattern

baking, for API 89-93
writing, for page changing intent 38-42

Styled Components plugin
enabling 10
using 10, 11

T
TDD flow, for coding structures

creating 147
tests, writing for API 149
tests, writing for page components 148
tests, writing for store 149

252  Next.js Cookbook

test
creating, for application 184

test-driven development (TDD)
component, writing in test-first way 48-53
environment, configuring 43-47
using, for safety and management 42, 43

Time to First Byte (TTFB) 194
TypeScript

using, in NextJS 9

U
unit test to NextJS component,

development flow 64

next steps way, selecting 78
TDD way, for creating components 64-76
tests, debugging 76, 77

Utility classes 62

W
WebPack

customizing 6-9

